ADDITIVE FOR CELLULOSE ACETATE MEMBRANE FROM COCONUT SAP IN DESALINATION APPLICATION

Main Article Content

Senny Widyaningsih
Mochamad Chasani
Zusfahair Zusfahair
Muhamad Sofie Khaerul Anam
Alny Nur Anisya

Abstract

The cellulose acetate membrane based on coconut sap was successfully synthesized by phase inversion method. Membrane application on desalination has been done to know membrane performance. The additive can affect the membrane performance. This research was conducted to find out the effect of the additive. The additives are polyethylene glycol (PEG) and formamide. Membrane characterization studied including flux, rejection, tensile strength, and pore size. The result showed that cellulose acetate membrane with PEG has 7.08 L/(m2.h) of flux and 32.23% of rejection. While membrane with formamide has 7.08 L/(m2.h) of flux and 46% of rejection. The additive can increase the membrane performance. Formamide additive gives a better membrane characteristic than PEG.

Downloads

Download data is not yet available.

Article Details

How to Cite
Widyaningsih, S., Chasani, M., Zusfahair, Z., Anam, M. S. K., & Anisya, A. N. (2020). ADDITIVE FOR CELLULOSE ACETATE MEMBRANE FROM COCONUT SAP IN DESALINATION APPLICATION. Malaysian Journal of Science, 39(2), 41–50. https://doi.org/10.22452/mjs.vol39no2.3
Section
Original Articles

References

Aprilia, N. A. S., Fauzi, Azmi, N., Najwan, N., & Amin, A. (2018). Performance of cellulose acetate membrane with different additives for palm oil mill effluent (POME) liquid waste treatment. IOP Conference Series: Materials Science and Engineering, 334(1). https://doi.org/10.1088/1757-899X/334/1/012024

Chen, G. J., & Lee, D. J. (2018). Synthesis of asymmetrical cellulose acetate/cellulose triacetate forward osmosis membrane: Optimization. Journal of the Taiwan Institute of Chemical Engineers, (xxxx). https://doi.org/10.1016/j.jtice.2018.10.031

Day, R. A., & Underwood, A. L. (1994). Analisa Kimia Kuantitatif. Erlangga.

Etemadi, H., Yegani, R., & Babaeipour, V. (2017). Performance evaluation and antifouling analyses of cellulose acetate/nanodiamond nanocomposite membranes in water treatment. Journal of Applied Polymer Science, 134(21), 1–14. https://doi.org/10.1002/app.44873

Ettouney, H., & Wilf, M. (2009). Conventional Thermal Process. Seawater Desalination: Conventional and Renewable Energy Processes. https://doi.org/10.1007/978-3-642-01150-4

Galiano, F., Briceño, K., Marino, T., Molino, A., Christensen, K. V., & Figoli, A. (2018). Advances in biopolymer-based membrane preparation and applications. Journal of Membrane Science, 564(May), 562–586. https://doi.org/10.1016/j.memsci.2018.07.059

Humplik, T., & Wang, E. (2017). Desalinating sea water: towards novel desalination membranes with enhanced performance. Membrane Technology, 2017(3), 10–11. https://doi.org/10.1016/S0958-2118(17)30058-7

Laghari, S. M., Isa, M. H., & Laghari, A. J. (2016). Delignification of palm fiber by microwave assisted chemical pretreatment for improving energy efficiency. Malaysian Journal of Science, 35(1), 8–14.

Mitrouli, S. T., Kostoglou, M., & Karabelas, A. J. (2016). Calcium carbonate scaling of desalination membranes: Assessment of scaling parameters from dead-end filtration experiments. Journal of Membrane Science, 510, 293–305. https://doi.org/10.1016/j.memsci.2016.02.061

Mulder. (1996). Basic Principles of Membrane Technology (first edit). Dordrecht: Kluwer Academic.

Mulyati, S., Aprilia, S., Safiah, Syawaliah, Armando, M. A., & Mawardi, H. (2018). The effect of poly ethylene glycol additive on the characteristics and performance of cellulose acetate ultrafiltration membrane for removal of Cr(III) from aqueous solution. IOP Conference Series: Materials Science and Engineering, 352(1). https://doi.org/10.1088/1757-899X/352/1/012051

Radiman, C. L., Widyaningsih, S., & Sugesty, S. (2008). New applications of kenaf (Hibiscus cannabinus L.) as microfiltration membranes. Journal of Membrane Science, 315(1–2), 141–146. https://doi.org/10.1016/j.memsci.2008.02.012

Radiman, Cynthia L, & Sarinastiti, A. (2012). Cellulosic Materials As Polymer Electrolyte. Jurnal Selulosa, 2(2), 46–52.

Rosnelly, C. M., Darmadi, & Sofyana. (2013). Effect of Dope Solution Temperature on Characteristic and Performance of Cellulose Diacetate Membrane Based on Cellulose of Sengon Wood ( Paraserianthes falcataria sp ). In Journal on Advanced Science Engineering Information Technology, 3(2), 15–18. https://doi.org/10.1016/j.biocon.2017.10.008

Rukmana, R., & Yuniarsih, Y. (2001). Membuat Kecap : Tempe Busuk, Nira, Air Kelapa (first edit). Yogyakarta: Kanisius.

Vaulina, E., Widyaningsih, S., Kartika, D., & Romdoni, M. P. (2018). The Effect of Cellulose Acetate Concentration from Coconut Nira on Ultrafiltration Membrane Characters. IOP Conference Series: Materials Science and Engineering, 349(1). https://doi.org/10.1088/1757-899X/349/1/012020

Widyaningsih, S., & Purwati, P. (2013). Pemanfaatan Membran Nata De Coco Sebagai Media Filtrasi Untuk Rekoveriminyak Jelantah. Molekul, 8(1), 20. https://doi.org/10.20884/1.jm.2013.8.1.122

Yap, P. S., Ibrahim, S., & Ang, K. B. (2013). TREATMENT OF RUBBER GLOVE WASTEWATER BY ULTRAFILTRATION. Malaysian Journal of Science, 32(1), 61–65.

Zafar, M., Ali, M., Maqsood, S., Jamil, T., Taqi, M., & Butt, Z. (2012). Effect of additives on the properties and performance of cellulose acetate derivative membranes in the separation of isopropanol / water mixtures. Desalination, 285, 359–365. https://doi.org/10.1016/j.desal.2011.10.027

Zularrisam, A. ., Ismail, A. ., & Salim, M. . (2007). Ultrafiltartion of Natural Organic Matter (NOM): Effect of NOM Characteristic on Membrane Rejection Mechanisms in Drinking Water Process. Malaysian Journal of Science, 26(1), 97–107.