CRUDE POLYSACCHARIDES EFFECT OF Coriolus versicolor ON Mycobacterium fortuitum-INDUCED IMMUNE DYSFUNTION IN MICE

Main Article Content

Sri Puji Astuti Wahyuningsih
Dwi Winarni
Win Darmanto
Sugiharto S.
Elma Sakinatus Sajidah
Baiq Naili Dewi Atika

Abstract

Coriolus versicolor contains crude polysaccharides which have β-glucan active ingredients. It can activate granulocyte, monocyte, and macrophage. Administration of crude polysaccharide of C. versicolor against bacterial infection is hypothesized to increase immune response. This study assessed the crude polysaccharides activity of C. versicolor in improving immune response after induction of non-tuberculosis mycobacteria, Mycobacterium fortuitum. Animal model was female mice strain BALB/c aged 8-10 weeks. A crude polysaccharide of C. versicolor was administered before and/or after the bacteria infection for 10 days at a dose of 50 mg/kg body weight. Mice exposure to M. fortuitum was performed twice at a dose of 0.5 Mc. Farland. After crude polysaccharides treatment, both serum and peritoneal fluid were isolated. All data collected were analyzed statistically using ANOVA and Duncan test. Oral administration of crude polysaccharide was found to increase phagocyte number (P<0.05, from crude polysaccharides administration before-after infection), improve phagocytic activity (P<0.05, from crude polysaccharides administration before infection), raise both IFN-g and antibody level (P<0.05, from crude polysaccharides administration after and before-after infection), and it caused TNF-α levels to tend to a normal concentration (P>0.05, TNF-α levels after crude polysaccharides administration were relatively the same as controls). Administration of crude polysaccharides of C. versicolor could enhance non-specific immune response, specific immune response, and pro-inflammatory cytokine in mice infected by M. fortuitum. These results suggested that crude polysaccharides of C. versicolor may be applied as an effective immunostimulatory agent.

Downloads

Download data is not yet available.

Article Details

How to Cite
Wahyuningsih, S. P. A., Winarni, D., Darmanto, W., S., S., Sajidah, E. S., & Dewi Atika, B. N. (2019). CRUDE POLYSACCHARIDES EFFECT OF Coriolus versicolor ON Mycobacterium fortuitum-INDUCED IMMUNE DYSFUNTION IN MICE. Malaysian Journal of Science, 38(Sp3), 30–41. https://doi.org/10.22452/mjs.sp2019no3.4
Section
UMInd2018 (Published)

References

Abbas A K., Litchmann A H., Pober J S. (2014) Cellular and Molecular Immunology - 8th edition, Philadelphia: W B. Saunders Company USA.

Atkins B L., Gottlieb T. (2014) Skin and soft tissue infections caused by nontuberculous mycobacteria, Curr. Opin. Infect. Dis. 27(2): 137–145.

Awadasseid A., Hou J., Gamallat Y., Xueqi S., Eugene K D., Hago A M., Bamba D., Meyiah A., Gift C., Xin Y. (2017) Purification, characterization, and antitumor activity of a novel glucan from the fruiting bodies of Coriolus versicolor, Plos One. 12(2): e0171270.

Chan G C., Chan W K., Sze D M. (2009) The effect of β-glucan on human immune and cancer cells, J. Hematol. Oncol. 2(25): 1-11.

Chen J., Seviour R. (2007) Medicinal importance of fungal β-(1→3), (1→6)-glucans, Mycol. Res. 111(6): 635-652.

Chen K L, Weng B C, Chang M T. (2008) Direct enhancement of the phagocytic and bactericidal capability of abdominal macrophage of chicks by beta-1,3–1,6-glucan, Poult. Sci. 87(11): 2242-2249.

D’Elios M., Benagiano M., Bella C., Amedei A. (2011) T-cell response to bacterial agents, J. Infect. Dev. Ctries. 5(9): 640-645

Detrick B., Nagineni C N., Hooks J. (2008) Cytokines: regulators of immune responses and key therapeutic targets. Gorman MRG, Donnenberg AD. (eds). Handbook of Human Immunology, 2nd ed. CRC Press.

Fritz H., Kennedy D A., Ishii M., Fergusson D., Fernandes R., Cooley K., Seely D. (2015) Polysaccharide K and Coriolus versicolor Extracts for Lung Cancer: A Systematic Review, Integr. Cancer. Ther. 14(3): 201-11.

Goodridge H S., Wolf A J., Underhill D M. (2009) Beta-glucan recognition by the innate immune system, Immunol. Rev. 6(1): 33-34.

Griffith D E., Aksamit T., Brown-Elliott B A., Catanzaro A., Daley C., Gordin F. (2007) An official ATS/IDSA statement: diagnosis, treatment, and prevention of nontuberculous mycobacterial diseases, Am. J. Respir. Crit. Care. Med. 175(4): 367–416.

Kastin A J. (2013) Handbook of biologically active peptides, Academic Press, UK.

Keane J. (2004) Tumor necrosis factor blockers and reactivation of latent tuberculosis, Clin. Infect. Dis. 39(3):300–302.

Kotsirilos V., Sali A., Vitteta L. (2011) A guide to evidence-based integrative and complementary medicine, Elsevier Health Science Sydney.

Lahiri K K., Jena J., Pannicker K K. (2009) Mycobacterium fortuitum infections in surgical wounds, Med. J. Armed. Forces. India. 65(1): 91–92.

Laskin D L., Gardner C R., Laskin, J D. (2010) Phagocytes. Comprehensive Toxicol. 5:133-153.

Ley B M. (2001) Discovery the beta-glucan secret, BL Publications USA.

Meena D K., Das P., Kumar S., Mandal S C., Prusty A K., Singh S K. (2013) Beta-glucan: an ideal immunostimulant in aquaculture (a review), Fish. Physiol. Biochem. 39: 431–57.

Ng T B. (1998) A review of research on the protein-bound polysaccharide (polysaccharopeptide, PSP) from the mushroom Coriolus versicolor (Basidiomycetes: Polyporaceae), Gen Pharmacol. 30(1): 1-4.

Novak M., Vetvicka V. (2008) Beta-glucan, history, and the present: immunomodulatory aspect and mechanisms of action. J. Immunotoxicol., 5(1): 47-57.

Paul W E. (2013) Fundamental Immunology, 7th Edition, Lippincott Williams & Wilkins USA.

Saleh M H., Rashedi I., Keating A. (2017) Immunomodulatory properties of Coriolus versicolor: the role of polysaccharopeptide, Front. Immunol. 8(1087): 1-12.

Scheld W M., Whitley R J., Marra C M. (2014) Infections of the central nervous system, 4th edition, Philadelphia: Wolters Kluwer Health, USA.

Sze D M., Chan G C. (2009) Supplements for immune enhancement in hematologic malignancies, Hematology Am. Soc. Hematol. Educ. Program. 2009:313–319.

Taylor P R., Brown G D., Herre J., Williams D L., Willment J A., Gordon S. (2004) The role of SIGNR1 and the beta-glucan receptor (dectin-1) in the non-opsonic recognition of yeast by specific macrophages, J. Immunol. 172(2): 1157-1162.

Ushach I., Albert Zlotnik A. (2016) Biological role of granulocyte-macrophage colony-stimulating factor (GM-CSF) and macrophage colony-stimulating factor (M-CSF) on cells of the myeloid lineage, Leukoc Biol. 100(3): 481–489.

Vetvicka V., Oliveira C. (2014) β(1-3)(1-6)-D-glucans modulate immune status in pigs: potential importance for efficiency of commercial farming, Ann. Transl. Med. 2(2): 16.

Wahyuningsih S P A., Savira N I I., Darmanto W. (2016) Effect of polysaccharide krestin from Coriolus versicolor on phagocytic activity and capacity of Mus musculus exposed Pseudomonas aeruginosa, Biosaintifika: Journal of Biology & Biology Education. 8(3): 308-313.

Wahyuningsih S P A., Pramudya M., Putri I P., Savira N I I., Winarni D., Darmanto W. (2018) Crude polysaccharides from okra pods (Abelmoschus esculentus) grown in Indonesia enhance the immune response due to bacterial infection, Adv. Pharmacol. Sci., 2018(4) ID 8505383.

Yang S F., Zhuang T F., Si Y M., Qi K Y., Zhao J. (2015). Coriolus versicolor mushroom polysaccharides exert immunoregulatory effects on mouse B cells via mem-brane Ig and TLR-4 to activate the MAPK and NF-kappaB signaling pathways, Mol. Immunol. 64(1): 144–51.

Yu J., Cong L., Wang C., Li H., Zhang C., Guan X., Liu P., Xie Y., Chen J., Sun J. (2018). Immunomodulatory effect of Schisandra polysaccharides in cyclophosphamide‑induced immune-compromised mice, Exp. Ther. Med. 15(6): 4755-4762.