EFFECT TWO ZERO DISPERSION WAVELENGTHS AND RAMAN SCATTERING IN THE THIRD-ORDER SOLITON OF SOLID CORE PHOTONIC CRYSTAL FIBERS TO PRODUCE SUPERCONTINUUM GENERATION

Main Article Content

Mohammed Altaie

Abstract

              Photonic crystal fibers (PCFs)  which consist of dielectric materials are a don't ever and an ever field in more modern application. The Split-Step Fourier method (SSFM) was used in this work to create a fiber photonic crystal, which was suggested and validated using a Matlab software .The impact of two -zero- dispersion on the Soliton in solid core photonic crystal fibers has been studied by investigating the interplay between Raman effect and second- order- dispersion. It has been discovered that the proposed photonic crystal fibers two –zero- dispersion wavelengths (TZDW) can be used to effectively tailor the properties of third order soliton. Many current  applications, including medical and industrial, rely on spectral expansion. In addition,  soliton has an important  role in modern communication systems.

Downloads

Download data is not yet available.

Article Details

How to Cite
Altaie, M. (2022). EFFECT TWO ZERO DISPERSION WAVELENGTHS AND RAMAN SCATTERING IN THE THIRD-ORDER SOLITON OF SOLID CORE PHOTONIC CRYSTAL FIBERS TO PRODUCE SUPERCONTINUUM GENERATION. Malaysian Journal of Science, 41(2), 55–68. https://doi.org/10.22452/mjs.vol41no2.5
Section
Original Articles

References

Agrawal, G. P. (2000). Nonlinear fiber optics. In Nonlinear Science at the Dawn of the 21st

Century (pp. 195-211). Springer, Berlin, Heidelberg.‏

Amiranashvili, S., Bandelow, U., & Akhmediev, N. (2013). Few-cycle optical solitary waves

in nonlinear dispersive media. Physical Review A, 87(1), 013805.‏

Krupa, K., Tonello, A., Barthélémy, A., Mansuryan, T., Couderc, V., Millot, G., ... &

Wabnitz, S. (2019). Multimode nonlinear fiber optics, a spatiotemporal avenue.

APL Photonics, 4(11), 110901 .‏

Maidi, A. M. I., Abas, P. E., Petra, P. I., Kaijage, S., Zou, N., & Begum, F. (2021, July).

Theoretical considerations of photonic crystal fiber with all uniform-sized air holes for

liquid sensing. In Photonics (Vol. 8, No. 7, p. 249). Multidisciplinary Digital

Publishing Institute.‏

Pisco, M., & Galeotti, F. (2021). Nano-and Micropatterning on Optical Fibers by Bottom-Up

Approach: The Importance of Being Ordered. Applied Sciences, 11(7), 3254.‏

Amiranashvili, S., Bandelow, U., & Akhmediev, N. (2014). Spectral properties of limiting

solitons in optical fibers. Optics express, 22(24), 30251-30256.‏

Nixon, S. D. (2011). Development and Applications of Soliton Perturbation Theory.

University of Colorado at Boulder.‏

Chakravarthi, M. K., Watekar, P. R., Babu, A. V., Sateesh, M., & Reddy, P. V. Optimization

of Silica Glass Micro Fiber for Zero Dispersion Wavelength. In National Conference

on Innovative Paradigms in Engineering Technology (NCIPET-2012) Proceedings.‏

S Habeb, R. (2018). Design of Zero Dispersion Optical Fiber at Wavelength 1.3

m. JOURNAL OF EDUCATION AND SCIENCE, 27(4), 54-68.‏

Cheng, C., Wang, Y., & Ou, Y. (2012). Enhanced red-shifted radiation by pulse trapping in

photonic crystal fibers with two zero-dispersion wavelengths. Optics & Laser

Technology, 44(4), 954-959.‏

Ung, B., & Skorobogatiy, M. (2011). Extreme nonlinear optical enhancement in chalcogenide

glass fibers with deep-subwavelength metallic nanowires. Optics letters, 36(13), 2527-

Foster, M. A., Turner, A. C., Lipson, M., & Gaeta, A. L. (2008). Nonlinear optics in

photonic nanowires. Optics Express, 16(2), 1300-1320.‏

Fujii, S., & Tanabe, T. (2020). Dispersion engineering and measurement of whispering

gallery mode microresonator for Kerr frequency comb generation nanophotonic,

(5), 1087-1104.‏

Hasan, M., Ahmed, S. N., & Mohiuddin, M. (2011). Study of soliton propagation inside

optical fiber for ultra-short pulse (Doctoral dissertation, BRAC University).‏

Ferreira, M. F. (2008). Nonlinear effects in optical fibers: Limitations and possibility.

Journal of Nonlinear Optical Physics & Materials, 17(01), 23-35.‏

Dubey PK., Shukla V.,( 2014) Dispersion in optical fiber communication. International

Journal of Science and Research (IJSR), 3: 236 – 239.

Sadeghpour, H. R., & Dalgarno, A. (1992). Rayleigh and Raman scattering by hydrogen and

caesium. Journal of Physics B: Atomic, Molecular and Optical Physics, 25(22),

Singh, M., Sharma, A. K., & Kaler, R. S. (2009). Investigations on timing jitter by chirp

selection of external modulator in return-to-zero optical soliton pulse transmission at

Gb/s. Fiber and Integrated Optics, 28(5), 354-365.‏

Hansson, T., Tonello, A., Mansuryan, T., Mangini, F., Zitelli, M., Ferraro, M., ... & Couderc,

V. (2020). Nonlinear beam self-imaging and self-focusing dynamics in a GRIN

multimode optical fiber: theory and experiments. Optics Express, 28(16), 24005-

Akhmediev, N., Soto-Crespo, J. M., Vouzas, P., Devine, N., & Chang, W. (2018).

Dissipative solitons with extreme spikes in the normal and anomalous dispersion

regimes. Philosophical Transactions of the Royal Society A: Mathematical, Physical

and Engineering Sciences, 376(2124), 20180023.‏

Melnik, M. V., Tcypkin, A. N., & Kozlov, S. A. (2018). Temporal coherence of optical

supercontinuum. Rom. J. Phys, 63, 203.‏

Malomed, B., Torner Sabata, L., Wise, F., & Mihalache, D. (2016). On multidimensional

solitons and their legacy in contemporary atomic, molecular and optical

physics. Journal of Physics B: Atomic, Molecular and Optical Physics, 49(17),

Li, P., Mihalache, D., & Malomed, B. A. (2018). Optical solitons in media with focusing and

defocusing saturable nonlinearity and a parity-time-symmetric external potential.

Philosophical Transactions of the Royal Society A: Mathematical, Physical and

Engineering Sciences, 376(2124), 20170378.‏..

Lee, J. H., van Howe, J., Xu, C., & Liu, X. (2008). Soliton self-frequency shift: experimental

demonstrations and applications. IEEE Journal of Selected Topics in Quantum

Electronics, 14(3), 713-723.‏

Boyd, R. W. (2020). Nonlinear optics. Academic press.

Shah, N. A., Agarwal, P., Chung, J. D., El-Zahar, E. R., & Hamed, Y. S. (2020). Analysis of

optical solitons for nonlinear schrödinger equation with detuning term by iterative

transform method. Symmetry, 12(11), 1850.‏

Duan, L., Liu, X., Mao, D., Wang, L., & Wang, G. (2012). Experimental observation of

dissipative soliton resonance in an anomalous-dispersion fiber laser. Optics

express, 20(1), 265-270.‏

Luan, F., Yulin, A. V., Knight, J. C., & Skryabin, D. V. (2006). Polarization instability of

solitons in photonic crystal fibers. Optics express, 14(14), 6550-6556.‏

Sakr, H., Hussein, R. A., Hameed, M. F. O., & Obayya, S. S. A. (2019). Analysis of photonic

crystal fiber with silicon core for efficient supercontinuum generation. Optik, 182, 848-

‏ Sutherland, R. L. (2003). Handbook of nonlinear optics. CRC press.‏

Wartak, M. S. (2013). Computational photonics: an introduction with MATLAB. Cambridge

University Press.‏