WHAT IS THE TRUE CARBON FRACTION VALUE OF MANGROVE BIOMASS?

Main Article Content

Rahman
Maryono
https://orcid.org/0000-0002-0470-5310
Oktavia Nurmawaty Sigiro
https://orcid.org/0000-0003-0686-5841

Abstract

Carbon stock in mangrove stands is estimated through the biomass approach multiplied by the value of the mangrove carbon fraction. Many researchers use the value of 47% as the carbon fraction value for all mangrove species which should be based on the actual carbon content value. The research was conducted using the literature review method using a database ScienceDirect and Google Scholar until 2022. The search strategy was carried out using keywords: mangrove biomass, mangrove carbon stock, organic carbon of mangrove, carbon fraction of mangrove biomass, and chemical composition of mangrove biomass. The results showed that the value of the carbon fraction with the approach of organic carbon content was 46.4% and lower than the value of the carbon fraction with the approach of compounds making up mangrove biomass, which was 46.82%. This value was contributed by carbohydrates at 26.20%, amino acids 2.97%, tannins 3.22%, lignins 3.38%, fatty acids 7.69%, triterpenoids 3.17%, and n-alkanes 0.19. %. The estimation of mangrove carbon stock in forests with homogeneous species can use the value of carbon fraction in each mangrove species, namely 46.3% for B. gymnorrhiza, 45.9% for R. apiculata, and 47.1% for S. alba. Meanwhile , a carbon fraction value of 46.82% can be used for all true mangrove species to estimate the carbon stock in forests with heterogeneous mangrove species.

Downloads

Download data is not yet available.

Article Details

How to Cite
Rahman, Maryono, & Sigiro, O. N. (2023). WHAT IS THE TRUE CARBON FRACTION VALUE OF MANGROVE BIOMASS?. Malaysian Journal of Science, 42(2), 67–72. https://doi.org/10.22452/mjs.vol42no2.10
Section
Review Articles

References

Adame, M.F., Santini, N.S., Tovilla, C., Lule, A.V., Castro. L., Guevara, M. 2015. Carbon stock and soil sequestration rates of tropical riverine wetlands. Biogeosci. 12(12): 3805−3818. doi: 10.5194/bg-12-3805-2015.

Alongi, D.M. 2008. Mangrove forests: resilience, protection from tsunamis, and responses to global climate change. Estuar. Coast. Shelf Sci. 76(1): 1−13. doi: 10.1016/j.ecss.2007.08.024.

Alongi, D.M. 2014. Carbon cycling and storage in mangrove forests. Annual. Rev. Mar. Sci. 6: 195−219. doi: 10.1146/annurev-marine-010213-135020.

Alongi, D.M., and Mukhopadhyay, S.K. 2015. Contribution of mangrove to coastal carbon cycling in low latitude seas. Agricul. For. Meteorol. 213: 266−272. doi: 10.1016/j.agrformet.2014.10.005.

Analuddin, K., Kadidae, L., Haya, L.M.Y., Septiana, A., Sahidin, I., et al. 2020. Aboveground biomass, productivity, and carbon sequestration in Rhizophora stylosa mangrove forest of Southeast Sulawesi, Indonesia. Biodiversitas. 21(3): 1316−1325. doi: 10.13057/biodiv/d210407.

Clough, B.F., and Scott, K. 1989. Allometric relationships for estimating above-ground biomass in six mangrove species. For. Ecol. Manage. 27: 117−127. doi: 10.1016/0378-1127(89)90034-0.

Donato, D.C., Kauffman, J.B., Mackenzie, R.A., Ainsworth, A., Pfleeger, A.Z. 2012. Whole-island carbon stock in tropical pacific: Implications for mangrove conservation and upland restoration. J. Environ. Manage. 97:89−96. doi: 10.1016/j.jenvman.2011.12.004.

Fromard, F., Puig, H., Mougin, E., Betoulle, J.L., Cadamuro, L. 1998. Structure, above-ground biomass and dynamics of mangrove ecosystems: new data from French Guiana. Oecologia. 23(1/2): 39−53.

Hasidu, L.O.A.F., Prasetya, A., Maharani, Syaiful, M., Analuddin, K. 2022. Allometric model, aboveground biomass, and carbon sequestration of natural regeneration of Avicennia lanata (Ridley) at the in-active pond of Muna Regency, Southeast Sulawesi. Hayati J. of Scie. 29(3): 399–408. doi: 10.4308/hjb.29.3.399-408.

Hernes, P.J., Benner, R., Cowie, G.L., Goni, M.A., Bergamaschi, B.A., Hedges, J.I. 2001. Tannin diagenesis in mangrove leaves from a tropical estuary: A novel molecular approach. Geochim. Cosmochim. Acta. 65(18): 3109–3122. doi: 10.1016/S0016-7037(01)00641-X.

Kauffman, J.B., Heider, C., Cole, T., Dwire, K.A., Donato, D.C. 2011 Ecosystem C pools of Micronesian mangrove forests. Wetlands. 31(2):343–352. doi: 10.1007/s13157-011-0148-9.

Kauffman, J.B., and Donato, D.C. 2012. Protocols for the measurement, monitoring, and reporting of structure, biomass, and carbon stocks in mangrove forests. Working paper. CIFOR. 50p.

Komiyama, A., Poungparn, S., Kato, S. 2005. Common allometric equation for estimating the tree weight of mangroves. J. Trop. Ecol. 21(4): 471–477. doi: 10.1017/S0266467405002476.

Kristensen, E., Bouillon, S., Dittmar, T., Marchand, C. 2008. Organic carbon dynamics in mangrove ecosystems: A review. Aqua. Bot. 89(2): 201–219. doi: 10.1016/j.aquabot.2007.12.005.

Kusmana, C., Hidayat, T., Tiryana, T., Rusdiana, O., Istomo. 2018. Allometric models for above – and below-ground biomass of Sonneratia spp. Glob. Ecol. Conserv. 15:e00417. doi: 10.1016/j.gecco.2018.e00417.

Mandala, S., Rayb, S., Ghosh, P.B. 2012. Comparative study of mangrove litter nitrogen cycling to the adjacent estuary through modeling in pristine and reclaimed islands of Sundarban mangrove ecosystem, India. Environ. Sci. 13: 340–362. doi: 10.1016/j.proenv.2012.01.033.

Marchand, C., Disnar, J.-R., Lallier-Verges, E., Lottier, N. 2005. Early diagenesis of carbohydrates and lignin in mangrove sediments subject to variable redox conditions (French Guiana). Geochim. Cosmochim. Acta. 69(1): 131–142. doi: 10.1016/j.gca.2004.06.016.

Mead, R., Xu, Y., Chong, J., Jaffe´, R. 2005. Sediment and soil organic matter source assessment as revealed by the molecular distribution and carbon composition of n-alkanes. Org. Geochem. 36(3): 363–370. doi: 10.1016/j.orggeochem.2004.10.003.

Putz, F.E., and Chan, H.T. 1986. Tree growth, dynamics, and productivity in a mature mangrove forest in Malaysia. Forest Ecology and Management. 17(2-3): 211–230. doi: 10.1016/0378-1127(86)90113-1.

Rahman., Efendi, H., Rusmana, I. 2017. Stock estimation and carbon absorption of mangrove in Tallo River, Makassar. J. For. Sci. 11(1): 19–28. doi: 10.22146/jik.24867.

Rahman, Wardiatno, Y., Yulianda, F., Rusmana, I., Ali, M. 2020a. Metode pengukuran dan model pendugaan biomassa Nypa fruticans di Sungai Tallo, Makassar – Indonesia. Jurnal Grouper. 11(1): 25–30. doi: 10.30736/grouper.v11i1.65.

Rahman, Wardiatno, Y., Yulianda, F., Rusmana, I., Bengen, D.G. 2020b. Metode dan Analisis Studi Ekosistem Mangrove. IPB Press. Bogor. 124pp.

Versteegh, G.J.M., Schefuß, E., Dupont, L., Marret, F., Sinninghe-Damst’e, J.S., Jansen, J.H.F. 2004. Taraxerol and Rhizophora pollen as proxies for tracking pas mangrove ecosystem. Geochim. Cosmochim. Acta. 68(3): 411–422. doi: 10.1016/S0016-7037(03)00456-3.