LARVICIDAL ACTIVITY OF THE SYNTHESISED LIGNANS, NEOLIGNANS, AND COUMARIN AGAINST Crocidolimia binotalis 2nd INSTAR LARVAE

Main Article Content

Siti Fadilah Juhan
Siti Mariam Mohd Nor
Mohd Shukri Mat Ali
Siti Zulaika Md Nor

Abstract

Five compounds comprising 8-O-4’-neolignan (7), two arylnaphthalene lignans (5, 8), aryldihydrobenzofuran neolignan (4), and lignan (6) were synthesised by enzymatic coupling reaction using horseradish peroxidase (HRP) between vanillin (1) with methyl ferulate (2) or methyl sinapate (3). All of these compounds, as well as previously synthesised palladium-catalysed coupling products of neolignan (9), 8-O-4'-neolignan (10), arylcoumarin (11), and lignan (12), were examined for larvicidal activity against Crocidolomia binotalis 2nd instar larvae. It revealed that seven out of nine synthesised compounds had a mortality rate of more than 90% after 24 hours of exposure. Neolignan (10) and lignan (6) demonstrated the strongest larvicidal activity with LD50 = 2.218 mg/L and LD50 = 1.678 mg/L, respectively compared to the standard azadirachtin (LD50 =2.818 mg/L). The results showed that the synthesised compounds have a high potential for use in the control of C. binotalis larvae and could be used in the development of new and more effective compounds as larvicides.

Downloads

Download data is not yet available.

Article Details

How to Cite
Juhan, S. F. ., Mohd Nor, S. M., Mat Ali, M. S., & Md Nor, S. Z. (2023). LARVICIDAL ACTIVITY OF THE SYNTHESISED LIGNANS, NEOLIGNANS, AND COUMARIN AGAINST Crocidolimia binotalis 2nd INSTAR LARVAE. Malaysian Journal of Science, 42(1), 7–16. https://doi.org/10.22452/mjs.vol42no1.2
Section
Original Articles

References

Akashe, M. M., Pawade, U. V., & Nikam, A. V. (2018). Classification of pesticides: A review. Int. J. Res. Ayurveda Pharm., 9(4), 144-150.

Ayil-Gutiérrez, B. A., Villegas-Mendoza, J. M., Santes-Hernández, Z., Paz-González, A. D., Mireles-Martínez, M., Rosas-García, N. M., & Rivera, G. (2015). Ruta graveolens extracts and metabolites against Spodoptera frugiperda. Nat. Prod. Comm., 10, 1955-1958.

Bhardwaj, A., Tewary, D. K., Kumar, R., Kumar, V., Sinha, A. K., & Shanker, A. (2010). Larvicidal and structure-activity studies of natural phenylpropanoids and their semisynthetic derivatives against the tobacco armyworm Spodoptera litura (FAB.) (Lepidoptera: Noctuidae). Chemistry & Biodiversity, 7(1), 168-177.

Céspedes, C. L., Martinez-vázquez, M., Calderón, J. S., Salazar, J. R., & Eduardo, A. (2015). Insect growth regulatory activity of some extracts and compounds from Parthenium argentatum on fall armyworm Spodoptera frugiperda. A Journal of Biosciences, 56, 95-105.CFR (Code of Federal Regulations). Title 40 CFR Part 156 - Labeling Requirements for Pesticides and Devices. Retrieved from https://www.ecfr.gov/current/title-40/chapter-I/subchapter-E/part-156. Accessed 14 July 2022.

Che, Z., Yu, X., Zhi, X., Fan, L., Yao, X., & Xu, H. (2013). Synthesis of novel 4α-(acyloxy)-2′(2′,6′)- (di)halogenopodophyllotoxin derivatives as insecticidal agents. Journal of Agricultural and Food Chemistry, 61(34), 8148-8155.

Di, X., Liu, Y., Liu, Y., Yu, X., Xiao, H., Tian, X., & Gao. R. (2007). Synthesis and insecticidal activities of pyridine ring derivatives of podophyllotoxin. Pesticide Biochemistry and Physiology, 89, 81-87.

Fang, J., Reichelt, M., Kai, M., & Schneider, B. (2012). Metabolic profiling of lignans and other secondary metabolites from rapeseed (Brassica napus L.). J. Agric. Food Chem., 60, 10523–10529.

González-Coloma, A., Escoubas, P., Mizutani, J., & Lajide, L. (1994). Insect growth inhibitors from Machilus japonica. Phytochemistry, 35(3), 607-610.

Guo, S-S., Pang, X., Wang, Y., Geng, Z-F., Cao, J-Q., Liang, J-Y., Deng, Z-W., & Du, S-S. (2020). Chemical constituents isolated from stems of Schisandra chinensis and their antifeedant activity against Tribolium castaneum. Natural Product Research, 34(18), 2595-2601.

Harmatha, J., & Dinan, L. (2003). Biological activities of lignans and stilbenoids associated with plant-insect chemical interaction. Phytochemistry Reviews 2, 321-330.

Hashim, N., & Ibrahim, Y. B. (2003). Efficacy of entomopathogenic fungi, Paecilomyces fumosoroseus, Beauveria bassiana and Metarhizium anisopliae var. majus against Crocidolomia binotalis (Lepidoptera; Pyralidae). Pertanika J. Trop. Agric. Sci., 26, 103-108.

Hashim, N., Ibrahim, Y. B., & Tan, Y. H. (2002). Electron microscopy of entomopathogenic fungal invasion on the cabbage-heart caterpillar Crocidolomia binotalis Zeller (Lepidoptera: Pyralidae). Asean J Sci Technol Dev, 19, 111-125.

Hikal, W. M., Baeshen, R. S., & Said-Al Ahl, H. A. H. (2017). Botanical insecticide as simple extractives for pest control. Cogent Biology, 3(1), 1-16.

Hubbard, M., Hynes, R. K., Erlandson, M., & Bailey, K. L. (2014). The biochemistry behind biopesticide efficacy. Sustain. Chem. Process, 2(18), 1-8.

IRAC (Insecticide Resistance Action Committee). The IRAC Mode of Action Classification. Retrieved from https://irac-online.org/mode-of-action. Accessed 14 July 2022.

Isman, M. B. (1993). Growth inhibitory and antifeedant effects of azadirachtin on six noctuids of regional economic importance. J. Pestic. Sci., 38, 57-63.

Isman, M. B. (2006). Botanical insecticides, deterrents and repellents in modern agriculture and an increasing regulated world. Annual Review of Entomology, 51(1), 45-66.

Issakul, K., Jatisatienr, A., Pawelzik, E., & Jatisatienr, C. (2011). Potential of Mammea siamensis as a botanical insecticide: Its efficiency on diamondback moth and side effects on non-target organisms. J. Med. Plant. Res., 5, 2149-2156.

Juhan, S. F., Mohd Nor, S. M., Kassim, N. K., Mohd Faudzi, S. M., & Mat Ali, M. S. (2018). One-step synthesis of new derivatives of 4-arylcoumarins and neolignans. Chemistry Research Journal, 3(4), 85-97.

Kannan, M., Vijayaraghavan, C., Jayaprakash, S. A., & Uthamsamy, S. (2011). Studies on the biology and toxicity of newer insecticide molecules on cabbagehead caterpillar, Crocidolomia binotalis (Zeller) (Lepidoptera: Pyralidae) in India. The 6th International Workshop on Management of the Diamondback Moth and Other Crucifer Insect Pests, 31-37.

Kilani, M. S., Morakchi, G. H., & Sifi, K. (2021). Azadirachtin-based insecticide: Overview, risk assessments, and future directions. Front. Agron., 3(32), 1-13.

Kirst, H. (2010). The spinosyn family of insecticides: realizing the potential of natural products research. J Antibiot, 63, 101–111.

Lewis, S. E., Silburn, D. M., Kookana, R. S., & Shaw, M. (2016). Pesticide behavior, fate, and effects in the Tropics: An overview of the current state of knowledge. Journal of Agricultural and Food Chemistry, 64(20), 3917-3924.

Li, Y., Wei, J., Fang, J., Lv, W., Ji, Y., Aioub, A. A., Zhang, J., & Hu, Z. (2019). Insecticidal activity of four lignans isolated from Phryma leptostachya. Molecules, 24, 1976.

Lim, G. S., Sivapragasam, A., & Loke, W. H. (1996). Crucifer insect pest problems: trends, issues and management strategies. Proceedings: The Management of Diamondback Moth and Other Crucifer Pests, 3-16.

Lin, M., Yang, S., Huang, J., & Zhou, L. (2021). Insecticidal triterpenes in Meliaceae: Plant species, molecules and activities: Part Ⅰ (Aphanamixis-Chukrasia). Int J Mol Sci., 22(24), 1-33.

Metcalf, R. L. (1971). Structure-activity relationships for insecticidal carbamates. Bull World Health Organ., 44(1-3), 43-78.

Moussouni, S., Saru, M. L., Ioannou, E., Mansour, M., Detsi, A., Roussis, V., & Kefalas, P. (2011). Crude peroxidase from onion solid waste as a tool for organic synthesis. Part II: Oxidative dimerization-cyclization of methyl p-coumarate, methyl caffeate and methyl ferulate. Tetrahedron Lett., 52, 1165-1168.

Ng, L. T., Yuen, P. M., Loke, W. H., & Azizol, A. K. (2003). Effects of Azadirachta excelsa on feeding behavoiur, body weight and mortality of Crocidolomia binotalis (Zeller) (Lepidoptera: Pyralidae). J Sci Food Agric, 83, 1327-1330.

Ooi, P. A. C., & Kelderman, W. (1979). The biology of three common pests of cabbages in Cameron Highland, Malaysia. Malaysian Journal of Agriculture, 52, 85-101.

Rathnayake, L. K., & Northrup, S. H. (2016). Structure and mode of action of organophosphate pesticides: A computational study. Computational and Theoretical Chemistry, 1088, 9-23.

Ren, Z., Lv, M., Li, T., Hao, M., Li, S., & Xu, H. (2020). Construction of oxime ester derivatives of osthole from Cnidium monnieri, and evaluation of their agricultural activities and control efficiency. Pest Manag. Sci., 76, 3560-3567.

Roger, J. C., Upshall, D. G., & Casida, J. E. (1969). Structure-activity and metabolism studies on organophosphate teratogens and their alleviating agents in developing hen eggs with special emphasis on bidrin. Biochemical Pharmacology, 18(2), 373-392.

Sastrosiswojo, S., & Setiawati, W. (1992). Biology and control of Crocidolomia binotalis in Indonesia. Asian Vegetable Research and Development Center, Taipei, 81-87.

Shan, X., Lv, M., Wang, J., Qin, Y., & Xu, H. (2022). Acaricidal and insecticidal efficacy of new esters derivatives of a natural coumarin osthole. Industrial Crops and Products, 182, 114855.

Shepard, B. M., & Schellhorn, N. A. (1994). A Plutella/Crocidolomia management program for cabbage in Indonesia. Proceedings: The Management of Diamondback Moth and Other Crucifer Pests, 262-266.

Srinivasan, K., & Veeresh, G. K. (1986). The development and comparison of visual damage thresholds for the chemical control of Plutella xylostella and Crocidolomia binotalis on cabbage in India. International Journal of Tropical Insect Science, 7, 547-557.

Wakimoto, T., Nitta, M., Kasahara, K., Chiba, T., Ye, Y., Tsuji, K., Kan. T., Nukaya, H., Ishiguro. M., Koike, M., Yokoo, Y., & Suwa, Y. (2009). Structure-activity relationship study on α1-adrenergic receptor antagonists from beer. Bioorganic and Medicinal Chemistry Letters, 19, 5905-5908.

Wang, X., Wei, X., Huang, X., Shen, L., Tian, Y., & Xu, H. (2011). Insecticidal constructure and bioactivities of compounds from Ficus sarmentosa var. henryi. Agricultural Sciences in China, 10(9), 1402–1409.

Wang, Y., Zhang, L-T., Zhang, D., Guo, S-S., Xi, C., & Du, S-S. (2020). Repellent and feeding deterrent activities of butanolides and lignans isolated from Cinnamomum camphora against Tribolium castaneum. Journal of Chemistry, 1-7.

Wu, H., Wu, H., Wang, W., Liu, T., Qi, M., Feng, J., Li, X., & Liu, Y. (2016). Insecticidal activity of sesquiterpene lactones and monoterpenoid from the fruits of Carpesium abrotanoides. Industrial Crops and Products, 92, 77-83.

Xiao, X. M., Ji, Z. Q., Zhang, J. W., Shi, B. J., Wei, S. P., & Wu, W. J. (2013). A new lignan from Phryma leptostachya. Chem. Nat. Cmpd., 49, 21-23.

Xu, H., & Xiao. X. (2009). Natural products-based insecticidal agents 4. Semisynthesis and insecticidal activity of novel esters of 2-chloropodophyllotoxin against Mythimna separata Walker in vivo. Bioorganic and Medicinal Chemistry Letters, 21, 5177-5180.

Yadav, I. C., & Devi, N. L. (2017). Pesticides classification and its impact on human and environment. Environment Science & Engineering: Vol. 6 Toxicology (pp.140-158). Studium Press LLC, USA.

Yang, C., Zhi, X., & Xu, H. (2015). Synthesis of benzoxazole derivatives of honokiol as insecticidal agents against Mythimna separata Walker. Bioorganic and Medicinal Chemistry Letters, 25, 2217-2219.

Yu. S. J. (1992). Detection and biochemical characterization of insecticide resistance in fall armyworm (Lepidoptera: Noctuidae). Entomological Society of America, 85(3), 675-682.