THE EFFECT OF CHEMICAL ACTIVATION AGENTS AND ACTIVATION TEMPERATURE ON THE PORE STRUCTURE OF RICE HUSK-DERIVED ACTIVATED CARBON

Main Article Content

Dendi Adi Saputra
https://orcid.org/0000-0002-8057-5263
Adjar Pratoto
https://orcid.org/0009-0007-0929-2379
Muhammad Fadhil Rahman
https://orcid.org/0009-0009-0944-2909
Akio Kodama

Abstract

This study investigates the optimization of production parameters for rice husk-derived activated carbon, aiming for its effective application in direct air capture (DAC) technology. Various chemical activation agents (potassium hydroxide [KOH], urea, and their combination) and activation temperatures (600°C, 700°C, and 800°C) were explored using pyrolysis. The resulting activated carbon's morphology was analyzed via scanning electron microscopy (SEM) and ImageJ. Results demonstrate that both activation agent choice and temperature significantly influence pore diameter size and quantity. Increased temperatures led to smaller pore diameters and higher pore quantities. The combination of KOH and urea at 800°C produced the most favorable particle size (0.811 μm), suitable for applications requiring a well-defined pore structure. This combination also exhibited the most even pore distribution and highest pore density. These findings provide valuable insights for optimizing the production of rice husk-derived activated carbon, aiding in the development of sustainable and effective sorbents for CO₂ capture in DAC technology. Additionally, they offer potential for broader applications of husk-activated carbon in various industrial and environmental fields.

Downloads

Download data is not yet available.

Article Details

How to Cite
Saputra, D. A., Pratoto, A. ., Rahman, M. F., & Kodama, A. (2024). THE EFFECT OF CHEMICAL ACTIVATION AGENTS AND ACTIVATION TEMPERATURE ON THE PORE STRUCTURE OF RICE HUSK-DERIVED ACTIVATED CARBON. Malaysian Journal of Science, 43(Sp1), 1–7. https://doi.org/10.22452/mjs.vol43sp1.1
Section
EACCO2CU2022

References

Cannone, S. F., Lanzini, A., & Santarelli, M. (2021). A review on CO2 capture technologies with focus on CO2-enhanced methane recovery from hydrates. In Energies (Vol. 14, Issue 2). MDPI AG. https://doi.org/10.3390/en14020387

Deng, Y., Li, J., Miao, Y., & Izikowitz, D. (2021). A comparative review of performance of nanomaterials for Direct Air Capture. Energy Reports, 7, 3506–3516. https://doi.org/10.1016/j.egyr.2021.06.002

Dissanayake, P. D., You, S., Igalavithana, A. D., Xia, Y., Bhatnagar, A., Gupta, S., Kua, H. W., Kim, S., Kwon, J. H., Tsang, D. C. W., & Ok, Y. S. (2020). Biochar-based adsorbents for carbon dioxide capture: A critical review. Renewable and Sustainable Energy Reviews, 119(November 2019), 109582. https://doi.org/10.1016/j.rser.2019.109582

Elhenawy, S. E. M., Khraisheh, M., Almomani, F., & Walker, G. (2020). Metal-organic frameworks as a platform for CO2 capture and chemical processes: Adsorption, membrane separation, catalytic-conversion, and electrochemical reduction of CO2. Catalysts, 10(11), 1–33. https://doi.org/10.3390/catal10111293

Goembira, F., Aristi, D. M., Nofriadi, D., & Putri, N. T. (2021). Analisis Konsentrasi PM2,5, CO, dan CO2, serta Laju Konsumsi Bahan Bakar Biopelet Sekam Padi dan Jerami pada Kompor Biomassa. Jurnal Ilmu Lingkungan, 19(2), 201–210. https://doi.org/10.14710/jil.19.2.201-210

Hussin, F., Aroua, M. K., Yusoff, R., & Szlachta, M. (2021). Preparation of eco-friendly adsorbent for enhancing CO2 adsorption capacity. Separation Science and Technology (Philadelphia), 00(00), 1–15. https://doi.org/10.1080/01496395.2021.1998122

Jouhara, H., Ahmad, D., van den Boogaert, I., Katsou, E., Simons, S., & Spencer, N. (2018). Pyrolysis of domestic based feedstock at temperatures up to 300 °C. Thermal Science and Engineering Progress, 5(October 2017), 117–143. https://doi.org/10.1016/j.tsep.2017.11.007

Lee, J. W., Kim, S., Torres Pineda, I., & Kang, Y. T. (2021). Review of nanoabsorbents for capture enhancement of CO2 and its industrial applications with design criteria. Renewable and Sustainable Energy Reviews, 138(March 2020), 110524. https://doi.org/10.1016/j.rser.2020.110524

Lushpa, N. V, Lawah, A. I., Chernyakova, K. V., & Vrublevs, I. A. (2018). Using The ImageJ Software for Determining Parameters Of Microstructure Of Nanoporous Materials By The Results Of SEM Image Processing. Big Data and Advanced Analytics, 3–4.

Rinawati, Hidayat, D., Supriyanto, R., Permana, D. F., & Yunita. (2019). Adsorption of Polycyclic Aromatic Hydrocarbons using Low-Cost Activated Carbon Derived from Rice Husk. Journal of Physics: Conference Series, 1338(1). https://doi.org/10.1088/1742-6596/1338/1/012005

Segneri, V., Trinca, A., Libardi, N., Colelli, L., Micciancio, M., & Vilardi, G. (2023). Nanoparticles used for CO2 Capture by Adsorption: a Review. Chemical Engineering Transactions, 101, 133–138. https://doi.org/10.3303/CET23101023

Shi, X., Xiao, H., Azarabadi, H., Song, J., Wu, X., Chen, X., & Lackner, K. S. (2020). Sorbents for the Direct Capture of CO2 from Ambient Air. In Angewandte Chemie - International Edition (Vol. 59, Issue 18, pp. 6984–7006). Wiley-VCH Verlag. https://doi.org/10.1002/anie.201906756

Wang, X., Chen, Y., Xu, W., Lindbråthen, A., Cheng, X., Chen, X., Zhu, L., & Deng, L. (2023). Development of high capacity moisture-swing DAC sorbent for direct air capture of CO2. Separation and Purification Technology, 324. https://doi.org/10.1016/j.seppur.2023.124489

Yaumi, A. L., Bakar, M. Z. A., & Hameed, B. H. (2018). Melamine-nitrogenated mesoporous activated carbon derived from rice husk for carbon dioxide adsorption in fixed-bed. Energy, 155, 46–55. https://doi.org/10.1016/j.energy.2018.04.183

Zhang, X., Huang, Y., Gao, H., Luo, X., Liang, Z., & Tontiwachwuthikul, P. (2019). Zeolite catalyst-aided tri-solvent blend amine regeneration: An alternative pathway to reduce the energy consumption in amine-based CO2 capture process. Applied Energy, 240(February), 827–841. https://doi.org/10.1016/j.apenergy.2019.02.089