
 

 

Malaysian Journal of Science 38 (Special Issue 2): 73 - 83 (2019) 

 
THE INTERNATIONAL SEMINAR ON MATHEMATICS IN INDUSTRY (ISMI)  

AND THE INTERNATIONAL CONFERENCE ON THEORETICAL AND APPLIED STATISTICS (ICTAS) 

ISMI-ICTAS18 [4-6 SEPTEMBER 2018] 

 
 

73 

 

Multivariate CUSUM Control Chart Based on the Residuals of Multioutput 

Least Squares SVR for Monitoring Water Quality  
 

 

Hidayatul Khusna1a, Muhammad Mashuri1b, Suhartono1c, Dedy Dwi Prastyo1d*, Muhammad 

Ahsan1e 

 
1
Department of Statistics, Institut Teknologi Sepuluh Nopember, Surabaya 60111, INDONESIA.  

E-mail: khusna16@mhs.statistika.its.ac.ida; m_mashuri@statistika.its.ac.idb; suhartono@statistika.its.ac.idc;  
dedy-dp@statistika.its.ac.idd; ahsan16@mhs.statistika.its.ac.ide  
*Corresponding Author: dedy-dp@statistika.its.ac.idd  

Received:  21st April 2019           Revised: 6th August 2019                  Published: 30th September 2019 

DOI : https://doi.org/10.22452/mjs.sp2019no2.7 

 

 

ABSTRACT   Monitoring serially dependent processes using conventional control charts 

yields a high false alarm rate. Multioutput Least Squares Support Vector Regression (MLS-SVR) 

has the capability to encompass the cross-relatedness between output variables by learning 

multivariate output variables simultaneously. This research aims to develop a Multivariate 

Cumulative Sum (MCUSUM) control chart based on the residual obtained from the MLS-SVR 

model for monitoring autocorrelated data. The inputs of the MLS-SVR are selected using the 

significant lag of a partial autocorrelation function. The proposed control chart is applied to monitor 

water quality data and it can detect the assignable causes in those data caused by a broken pipeline. 

 

Keywords:   autocorrelated, control chart, multioutput least squares SVR, multivariate CUSUM, 

water quality. 

 
 

1. INTRODUCTION 
 

One of the most useable tools in 

statistical process control is the control chart 

(Woodall & Montgomery, 1999). Many 

assumptions need to be fulfilled in order to 

propose a control chart. Most of the 

traditional charts assume that the observations 

are not dependent and satisfy a multivariate 

normal distribution. The violation of the 

independence assumption affecting the 

control chart performance has been 

investigated by many researchers. Harris & 

Ross (1991) proved that autocorrelation 

affects the Average Run Length (ARL) of an 

Exponentially Weighted Moving Average 

(EWMA) and Cumulative Sum (CUSUM) 

control chart. Moreover, a CUSUM control 

chart drew an incorrect conclusion when 

applied to autoregressive AR(1) and moving 

average MA(1) data (Johnson & Bagshaw, 

1974). Serially dependent data might lead to 

an incorrect out-of-control signal and break 

the effectiveness of a control chart 

(Noorossana & Vaghefi, 2006). Applying the 

conventional control chart for monitoring the 

autocorrelated processes will produce a high 

false alarm rate and reduce its ability to detect 

a shift of the process (Psarakis & Papaleonida, 

2007). 

 

There are two different procedures 

that deal with monitoring autocorrelated data. 

First is monitoring serially dependent data 

using a modified control limit of the 

conventional control chart (Vanbrackle & 

Reynolds, 1997). Another approach is 

developing a residual-based control chart. 

This second procedure applies a time series 

model to the serially dependent data then uses 

a residuals component, i.e., the difference 

between the actual value and the forecast 

value, to monitor the process. The obtained 

residuals are independent, so it is possible to 
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monitor the process using the residuals 

component. Yashchin (1993) suggested 

applying the modified control chart for a low 

level of autocorrelation, but the residual-based 

control chart for a high level of 

autocorrelation. 

 

Many researchers have proposed 

different procedures for monitoring 

multivariate time series data. Chan & Li 

(1994) and Charnes (1995) improved the 

performance of Hotelling’s T2 control chart 

for a serially dependent process. Kalgonda & 

Kulkarni (2004) presented a multivariate 

control chart based on the residual of a Vector 

Autoregressive (VAR) process. Theodossiou 

(1993) introduced a Vector Autoregressive 

and Moving Average (VARMA)-based 

MCUSUM control chart. Kramer & Schmid 

(1997) proposed a Multivariate EWMA 

(MEWMA) control chart (Lowry et al., 1992) 

for a multivariate autocorrelated process. 

Śliwa & Schmid (2005) developed a residual-

based MEWMA control chart to monitor a 

cross-covariance matrix of a multivariate time 

series process. Furthermore, Wororomi et al. 

(2014) and Khusna et al. (2018) developed a 

residual based MEWMA control chart for 

monitoring the mean vector shift of 

multivariate autocorrelated data. 

 

When modeling a real application 

using the traditional time series method, it is 

usually hard to satisfy the particular 

assumption. The application of the traditional 

time series method also needs great expertise 

due to the complex structure of the 

autocorrelated data. In order to overcome 

these limitations, some researchers 

recommend the utilization of Support Vector 

Regression (SVR) as an alternative method 

(Sato et al., 2008; Thissen et al., 2003). The 

SVR algorithm has two main advantages. 

First, it is able to tackle both linear and 

nonlinear patterns data. Second, it is more 

reproducible since it can yield a globally 

optimal solution. Khediri et al. (2010) proved 

that a multivariate control chart based on the 

residuals of SVR is more effective than a 

multivariate control chart based on the 

residuals of an Artificial Neural Network 

(ANN). Issam & Mohamed (2008) proved 

that, in comparison to ANN and VAR, an 

SVR-based control chart performs better. 

 

Least Squares SVR (LS-SVR) is 

developed by replacing the quadratic 

programming problem in the SVR algorithm 

with a linear programming problem (Vapnik, 

1998; Vapnik, 2000). Furthermore, LS-SVR 

changes the inequality constraints in the SVR 

formula for equality ones (Suykens & 

Vandewalle, 1999; Suykens et al., 2002). The 

linear equation in LS-SVR is simple to solve 

and useful in computational time-saving. Xu 

et al. (2013) proposed multioutput LS-SVR 

(MLS-SVR) by combining the idea of 

Multioutput SVR (M-SVR) (Tuia et al., 2011) 

and multiresponse regression (Liu et al., 

2009). In order to cover the Hierarchical 

Bayes intuition, Xu et al. (2013) proposed an 

MLS-SVR algorithm which has the ability to 

overcome the differences in slope function for 

each output variable. 

 

Several researchers have developed a 

MCUSUM control chart for monitoring 

multivariate autocorrelated data. Bodnar & 

Schmid (2007) proposed both a modified 

MCUSUM control chart (Crosier, 1988; Ngai 

& Zhang, 2001; Pignatiello & Runger, 1990) 

and a VARMA-based MCUSUM control 

chart. Hwang (2016) presented an MLS-SVR-

based MCUSUM (Healy, 1987) control chart 

by considering the covariance of the error 

term. Hwang (2016) developed a new MLS-

SVR which is different from the one proposed 

by Xu et al. (2013). The residuals of the 

MLS-SVR model resulting from in-control 

processes are assumed to satisfy a 

multivariate normal distribution as well as a 

white noise assumption. Therefore, the 

control limit of the MLS-SVR-based 

MCUSUM chart is equivalent to the control 

limit of the conventional MCUSUM chart 

(Healy, 1987). Hwang (2016) pointed out that 

the ARL of a MCUSUM chart based on the 

residuals of the MLS-SVR model outperforms 
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the ARL of a MCUSUM chart based on the 

residuals of the VARMA and LS-SVR model. 

The objective of this research is to 

develop an MLS-SVR (Xu et al., 2013) based 

MCUSUM control chart proposed by Crosier 

(1988) instead of the one proposed by Healy  

(1987). The proposed control chart is then 

applied to monitor water quality data. Water 

turbidity and the chlorine residual are two 

critical quality characteristics in water 

manufacturing processes. These quality 

characteristics are recorded hourly, in which 

observations show serial dependency. The rest 

of this paper is organized as follows. Section 

2 describes the MLS-SVR algorithm while 

section 3 presents the proposed control chart. 

The application of the MLS-SVR-based 

MCUSUM control chart for monitoring water 

quality data is shown in section 4. Finally, 

section 5 summarizes the results found in this 

work and presents future research. 

 

 

2. MULTIOUTPUT LEAST 

SQUARES SUPPORT VECTOR 

REGRESSION 

 

The basic algorithm of LS-SVR only 

learns the mapping from the input to a single 

output. If a problem solved using the LS-SVR 

algorithm consists of a multioutput case, then 

the cross-relatedness among output is 

disregarded. This problem inspired (Xu et al., 

2013) to develop the MLS-SVR algorithm, a 

multitask learning method which is useful to 

capture the relation between outputs. An 

observable output variable is defined as 

[ ] n m

ijy R  Y , for 1,2, ,i n  observations 

and 1,2, ,j m  output variables. Let 
1 2

1 2{( , ),( , ), ,( , )}n

nx y x y x y  be a specific 

independent and identically distributed 

sample, where d

i Rx , i m
Ry , and d   

defines the dimension of the input variables. 

Let : d hR R   be a mapping function to 

some higher dimensional Hilbert space with h 

dimension. All the MLS-SVR parameters are 

assumed to be associated with ( ) x , so that 

vector h

j Rw , for 
mj N  can be rewritten as 

0j j w w v , where the mean vector 0

hRw . 

The small value of vector h

j Rv  for 
mj N  

indicates that the output variables are similar 

to each other. The mean vector 0w  carries 

commonality information, while vector jv  

carries specialty information. 

 

Estimating the vector 0

hRw , matrix 

 1 2, , , h m

m R  V v v v , and parameter 

 1 2, , , m

mb b b R b  can be simultaneously 

obtained by minimizing the objective function 

with constraints as follows (Xu et al., 2013):

 

               
     0 0 0

1 '' '
min ( , , ) ,

2 2 2

s.t ( , , ) ,

T T T

T T

J trace trace
m

repmat n

 
  

  

w V Ξ w w V V Ξ Ξ

Y Z W b 1 Ξ

    (1) 

 

where       1 2, , , h n

n R    Z x x x . The 

matrix  1 2, , , n m

m R 

 Ξ ξ ξ ξ  contains the 

slack variables whereas the matrix 

 0 1 0 2 0 0, , , , h m

j m R      W w v w v w v w v

 illustrates the MLS-SVR parameter. The 

constants ',  '' R    are regularized 

parameters. The optimization problem in 

Equation (1) has the following Lagrange 

function:

 

                 0 0, , , , , , , , ,T T TL J trace repmat n    w V b Ξ A w V Ξ A Z W b 1 Ξ Y              (2) 
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where matrix  1 2, , ,
T

n m
m R  A α α α  consists of the Lagrange multiplier. 

Similar to LS-SVR, the MLS-SVR 

algorithm has a computational advantage by 

solving linear programming problems. The  

solutions of MLS-SVR are obtained by 

solving two sets of linear equation systems 

with the same positive definite matrix M, as 

stated in step 9 of Algorithm 1 (Xu et al., 

2013).

 

Algorithm 1. Calculation of MLS-SVR solutions 

1. Save the outputs of MLS-SVR as  1 2, , ,
T

T T T mn

m R y y y y . 

2. Specify the kernel function parameter  , regularized parameters ''  and ' . 

3. Calculate the matrix containing kernel function T n nR  K Z Z  from the inputs of MLS-SVR. 

4. Specify matrix  , , ,

m

mn m

n n n
blockdiag R


 N 1 1 1 . 

5. Specify matrix  , , mn mnrepmat m m R  Ω K . 

6. Specify matrix  , , ,

m

mn mnblockdiag R  Q K K K . 

7. Calculate the matrix  1( ')
''

mn mn

mn
m R


    M Ω I Q . 

8. Calculate the matrix 
1T m mR  G N M N . 

9. Calculate  and    from  M N  and  M y . 

10. Calculate TG N . 

11. Find a solution from 
1 Tb G y  and   α b . 

 

Supposing that       ' ' '

1 2, , ,
T

T T T

  α  and b  are the solutions for the MLS-SVR model, the 

decision function of MLS-SVR can be formulated as

                  

     

 

   

0

1

1 1 1

ˆ ( ) ( ) ( ) ,1, ( )

         = ( ) ,1, ( )
''

         = , ,1, , ,
''

T T
T T T

m
T T T

j

j

m n n
T

ij i i i

j i i

f repmat m

m
repmat m

m
repmat K m K

  

 


 




  

    

 
  

 

 
  

 



 

x x W b x w x V b

x Zα x Z A b

x x x x b

   (3) 

 

where  , iK x x  is a kernel function. This 

research employs the Radial Basis Function 

(RBF) kernel function. A grid search method 

(Hsu et al., 2016) is utilized to identify the 

proper hyper-parameter of the MLS-SVR 

model. The optimal pair of hyper-parameters 

,  ',  and "    is selected based on the 

criterion of the Minimum Mean Squared Error 

(MSE) value. The grid search method is 

carried out using all possible combinations of 

the kernel function parameter, 

 15 13 32 ,2 , ,2   , as well as regularized 

parameters,  10 8 10'' 2 ,2 , ,2    and 

 5 3 15' 2 ,2 , ,2   . 

 

 

3. MCUSUM CONTROL CHART 

BASED ON THE RESIDUALS OF MLS-

SVR 

 

The observable output variables that 
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satisfy multivariate autocorrelated data are 

defined as 1 2, , , , ,j my y y y , where 

1 2( , , , )T

j j j njy y yy  with 1,2, ,j m  the 

number of output variables. Each output 

variable is assumed to have a significant 

partial autocorrelation function (PACF) until 

lag 
1 2, , , mp p p  so that the input variables of 

the MLS-SVR model are selected as

 

                       11,( 1) 1,( ) ,( 1) ,( ) ,( 1) ,( ), , , , , , , , , , .
j mi i p j i j i p m i m i p     x y y y y y y    (4) 

 

Let ˆ ( )jf x  be the decision function of 

the MLS-SVR model utilizing the optimal 

parameters as in Equation (3). The vector of 

the residual can be computed as 
ˆ( )j j jf e y x . Hence, the n m  residual 

matrix e  consists of ,ije  where 

1,2, , ,  1,2, ,i n j m  . 

 

 Crosier (1988) presented an 

MCUSUM control chart in the form of the 

Hotelling T statistic, which is usually known 

as the Cumulative Sum of T (COT). If the 

residuals of the MLS-SVR model follow 

multivariate normal distribution ( , )m eN μ V  

then it can be transformed into Hotelling T 

statistics as follows: 

                                                     1/2[ ]i i e i eT   T -1
(e μ ) V (e μ ) .  (5) 

 

Therefore, MLS-SVR residuals-based MCUSUM statistics can be calculated with the following 

equation:

                                           1max[0, ],i i iC T k C          (6) 

 

where the initial value 0 0C   and the 

reference value 0.k   The MLS-SVR 

residuals-based MCUSUM control chart 

detects an out-of-control signal if the iC  

statistic is greater than the upper control limit 

H. 

 

The inputs of the MLS-SVR model are 

selected based on in-control processes 

(observations from Phase 1) using Equation 

(4); then the hyper-parameters are optimized 

using the grid search method so that the 

residuals satisfy the white noise condition. 

Once this assumption is satisfied, the value of 

H is estimated as in Crosier (1988). The 

application of MCUSUM on the MLS-SVR 

residual will ensure the stability and 

adaptability of the monitoring process. The 

optimal parameters and hyper-parameters 

obtained from Phase I can be utilized directly 

in the Phase II monitoring process. 

Furthermore, the researcher can adjust the 

level of tightness by setting reference value k 

in the MCUSUM statistics. 

 

 

4. RESULTS AND DISCUSSION 

 

This paper presents the application of 

the proposed MLS-SVR-based MCUSUM 

chart to monitor water quality data. Two 

prominent quality characteristics in the 

drinking water manufacturing process are the 

water turbidity and the chlorine residual. The 

concentration of dissolution and the existence 

of particles in a liquid are usually referred to 

as turbidity. Chlorination is affixing chlorine 

into contaminated water and is principally 

intended for killing the microbes. Turbidity is 

measured using Nephelometric Turbidity 

Units (NTU) whereas the chlorine residual is 

measured in ppm unit. Drinking water is safe 

from bacteria if it has a minimum of 0.2 ppm 

chlorine residual. However, the smell and 

taste of water are affected by exaggerated 

chlorine affixation. 
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This research monitors both water 

turbidity and chlorine residual data of the 

water manufacturing process in Surabaya, 

Indonesia. The water quality data in Phase I  

were monitored hourly from 19 August to 29 

August 2016. Figure 1 exhibits the plots of 

the PACF for water quality data in Phase I 

with a 5% significance limit. The PACF of 

water turbidity 1( )y  is significant at lag 1, lag 

2, lag 7, and lag 8, whereas the PACF of the 

chlorine residual 2( )y  is significant at lag 1, 

lag 3, and lag 9. Therefore, 1( 1) 1( 2), ,i i y y

1( 7) 1( 8), ,i i y y 2( 1) 2( 3) 2( 9), ,i i i  y y y  are chosen as 

the inputs of the MLS-SVR model for Phase 

I. These selected inputs along with the 

optimal combination of hyper-parameters 
5' 2  , 8" 2  , and 32   produce the 

minimum MSE= 46.05 10 . It is important to 

know that this research utilizes the Radial 

Basis Function (RBF) kernel function with a 

parameter  . 

 

 
Figure 1: Partial autocorrelation function plots of (a) water turbidity and (b) chlorine residual in 

Phase I. 

 

 
Figure 2: Time series plots of (a) water turbidity and (b) chlorine residual in Phase I. 

 

The time series plots of water quality 

data in Phase I are displayed in Figure 2. The 

predicted value from the MLS-SVR model 

shows a similar pattern to the actual value. In 

addition, the residuals resulting from the 

MLS-SVR model for water quality data in 

Phase I satisfy the white noise assumption 

(confirmed by the ACF plots in Figure 3). The 

MLS-SVR residuals also fulfill a multivariate 

normal distribution. These residuals are then 

monitored using the MCUSUM control as 

displayed in Figure 4. It does not detect any 

out-of-control signal, so the upper control 

limit H and the parameters of the MLS-SVR-

based MCUSUM control chart can be utilized 

in Phase II of the water manufacturing 

process.
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Figure 3: Autocorrelation function (ACF) plots of MLS-SVR residuals with 5% significance limit 

for (a) water turbidity and (b) chlorine residual in Phase I. 

 

 

 
Figure 4: Monitoring water quality data in Phase I using MLS-SVR-based MCUSUM control chart 

with reference value k=0.5 

 

 
Figure 5: Time series plots of (a) water turbidity and (b) chlorine residual in Phase II. 

 

The water quality data in Phase II 

were monitored hourly for five days starting 

from 30 August 2016. The time series plots of 

the actual water quality data and the predicted 

value from the MLS-SVR model in Phase II 

are displayed in Figure 5. The time series 

plots of actual water quality data starting from 

10.00 AM on 3 September 2016 show an 
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unusual pattern. The increasing pattern in the 

water turbidity plot indicates more turbid 

water. On the contrary, the steeply decreasing 

shift in the chlorine residual plot points to the 

higher number of microbes in the water. Both 

indicators reflect the worsened quality of the 

water. When the actual values are shifted 

significantly, the chlorine residual predictions 

are much less than the actual values (see 

Figure 5.b). This evidence indicates that 

MLS-SVR modeling needs some adaptation 

before it can follow the extreme changes in 

actual data. 

 

 
Figure 6: Monitoring water quality data in Phase II using MLS-SVR-based MCUSUM control chart 

with reference value k=0.5 

 

 
Figure 7: Time series plots of (a) water turbidity and (b) chlorine residual for 

updated Phase II. 

 

 
Figure 8: Monitoring updated water quality data in Phase II using MLS-SVR-based MCUSUM 

control chart with reference value k=0.5 
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The water quality data in Phase II are 

trained using the MLS-SVR algorithm by 

utilizing the optimal parameters and hyper-

parameters produced in Phase I. As depicted 

in Figure 6, the last eight statistics of the 

MLS-SVR-based MCUSUM control chart in 

Phase II show significant out-of-control 

signals. This result indicates a serious 

problem in both the water turbidity and 

chlorine residuals data. It is necessary to look 

for the assignable cause in order to improve 

the water manufacturing process. At that time 

point, a broken pipeline was found in one of 

the water distribution areas. Pipeline 

maintenance and flow meter installation were 

then conducted in order to handle the water 

manufacturing problem. 

 

The MLS-SVR-based MCUSUM 

control chart needs to be updated in order to 

fit the new observations in the further 

monitoring process. That is why the actual 

unusual pattern displayed in Figure 5 needs to 

be replaced with the predicted value from the 

MLS-SVR model. The updated water quality 

data in Phase II (see Figure 7) consist of 

actual water quality data in Phase II, except 

for the data starting from 10.00 AM on 3 

September 2016. The actual data in those 

periods are replaced by the predicted values 

from the MLS-SVR model. The MLS-SVR-

based MCUSUM control chart for the updated 

Phase II is exhibited in Figure 8. All of the 

MLS-SVR-based MCUSUM statistics are 

assigned as being in the in-control condition 

such that these updated data can be used in 

the next Phase I monitoring process. 

 

 

5. CONCLUSION 

 

This paper develops a MCUSUM 

control chart based on the residual of the 

MLS-SVR model for monitoring the mean 

vector of time series data. The inputs of the 

MLS-SVR model are determined based on the 

significant lag of the PACF. The appropriate 

inputs and the optimal combination of hyper-

parameters yield the residuals of the MLS-

SVR model that fulfill the white noise 

assumption. The MCUSUM control chart 

based on the residual of MLS-SVR that is 

used to monitor the water quality data 

indicates that corrective actions should be 

carried out in order to improve the water 

manufacturing process. Evaluating the 

performance of the proposed control chart 

using the Average Run Length (ARL) 

criterion may be useful in future research. 

Similarly, optimizing the SVR parameters 

using an evolutionary algorithm (Härdle et al., 

2014) may also be useful in future work. 
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