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ABSTRACT  A no-claim event is a common scenario in insurance and the abundance 

of no-claim events can be described adequately using zero-inflated models. The zero-inflated 

Poisson (ZIP) and the zero-inflated negative binomial (ZINB) regression models from the 

frequentist and Bayesian approaches were compared by considering Malaysian motor 

insurance data as a case study. The data was categorized into three claim types and the factors 

considered for regression modelling were coverage type, vehicle age, vehicle cubic capacity 

and vehicle make. Using mean absolute deviation and mean squared prediction error values 

as indicators for model comparison, it was discovered that the ZIP model from both 

approaches fit the data better than the ZINB model. Also, both ZIP and ZINB models from 

the Bayesian approach fit the data better than the frequentist models. Therefore, the Bayesian 

ZIP model is the best model for explaining motor insurance claim frequency in Malaysia for 

all three claim types. According to the best regression model, the most influential factors in 

determining the claim frequency for each claim type are vehicle age, coverage type and 

vehicle make. Vehicle age and coverage type have a positive influence on the claim frequency, 

while vehicle make has a negative influence. 

 

ABSTRAK Peristiwa tanpa tuntutan merupakan senario biasa yang berlaku dalam 

insurans dan kekerapan kejadian tanpa tuntutan yang berlebihan dapat dijelaskan dengan baik 

oleh model lebihan sifar. Model regresi lebihan-sifar Poisson (ZIP) dan lebihan-sifar binomial 

negatif (ZINB) mengikut pendekatan frekuentis dan Bayesan dibandingkan dengan 

mempertimbangkan data insurans motor Malaysia sebagai kajian kes. Data insurans motor 

dikategorikan kepada tiga jenis tuntutan dan faktor yang dipertimbangkan untuk pemodelan 

adalah jenis perlindungan, usia kendaraan, isian padu kenderaan dan jenis pembuatan 

kenderaan. Dengan menggunakan nilai min sisihan mutlak dan min ramalan ralat kuasa dua 

sebagai penunjuk bagi perbandingan model, didapati bahawa model ZIP dari kedua-dua 

pendekatan memberikan penyuaian yang lebih baik daripada model ZINB. Selain itu, kedua-

dua model ZIP dan ZINB dari pendekatan Bayesan memberikan penyuaian yang lebih baik 

daripada model frekuentis. Oleh itu, model ZIP Bayesan dipilih sebagai model terbaik dalam 

menerangkan kekerapan tuntutan insurans kenderaan di Malaysia untuk ketiga-tiga jenis 

tuntutan. Berdasarkan model ZIP Bayesan, faktor-faktor yang paling berpengaruh dalam 

menentukan kekerapan tuntutan bagi setiap jenis tuntutan adalah usia kenderaan, jenis 

perlindungan dan jenis pembuatan kenderaan. Faktor usia kenderaan dan jenis perlindungan 

mempunyai kesan positif terhadap kekerapan tuntutan manakala jenis pembuatan kenderaan 

memberikan kesan negatif terhadap kekerapan tuntutan. 

 

Keywords:   excess zero, linear models, own damage claim, third-party bodily injury claim, 

third-party property damage claim.  
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1. INTRODUCTION 

 

An excess of zeroes in insurance 

claim count data is common, which could 

be due to policyholders who do not file a 

claim. This implies that the data has a zero-

inflation property that can be incorporated 

into the regression model as studied by 

Ghosh, Mukhopadhyay and Lu (2006), Liu 

and Powers (2012), Roohi et al. (2016) and 

Xie, Lin & Wei (2014). Both frequentist 

and Bayesian methods can be used to fit a 

regression model, allowing both models to 

be compared (Ghosh, Mukhopadhyay & 

Lu, 2006; Roohi et al., 2016). Roohi et al. 

(2016) stated that the Bayesian regression 

model is superior to the frequentist 

regression model as the former gives a 

smaller standard error and a smaller 

confidence interval. The Bayesian 

regression model may also result in higher 

coverage probability (Ghosh, 

Mukhopadhyay & Lu, 2006; Liu & 

Powers, 2012) and lower biasness (Liu & 

Powers, 2012). Some other models for 

insurance claim count data that have been 

employed over the years are generalized 

linear models (Garrido, Genest & Schulz, 

2016), hurdle models (Gilenko & 

Miranova, 2017), zero-inflated models 

(Ismail & Zamani, 2013; Wagh & 

Kamalja, 2017) and regression models for 

location, shape and scale (Tzougas, 

Vrontos & Frangos, 2015). 

 

Several count distributions have 

been used over the years, with the Poisson 

distribution (Garrido, Genest & Schulz, 

2016; Ghosh, Mukhopadhyay & Lu, 2006; 

Ismail & Zamani, 2013; Wagh & Kamalja, 

2017) being the most common. Negative 

binomial distribution (Ismail & Zamani, 

2013; Tzougas, Vrontos & Frangos, 2015; 

Wagh & Kamlja, 2017) is used if there is 

overdispersion. Generalized Poisson 

distribution is also used by Ismail and 

Zamani, (2013) and Wagh and Kamalja, 

(2017). A generalized Poisson distribution 

can be used on overdispersed or 

underdispersed count data (Ismail & 

Zamani, 2013). Zero-inflated distributions 

such as zero-inflated Poisson (Ghosh, 

Mukhopadhyay & Lu, 2006; Liu & 

Powers, 2012; Ismail & Zamani, 2013; 

Rodrigues, 2003; Wagh & Kamalja, 2017, 

Zamani & Ismail, 2014), zero-inflated 

negative binomial (Ismail & Zamani, 

2013; Roohi et al., 2016) and zero-inflated 

generalized Poisson (Ismail & Zamani, 

2013; Wagh & Kamalja, 2017; Xie, Lin & 

Wei, 2014; Zamani & Ismail, 2014) are 

also widely used. The zero-inflated 

negative binomial and the zero-inflated 

generalized Poisson distributions both 

account for overdispersion and zero-

inflation properties, but the latter also 

accounts for underdispersion. 

 

Several factors are considered 

when modelling insurance claim count, 

including vehicle age, vehicle cubic 

capacity, vehicle make, coverage type, 

gender and driving experience, among 

others. The claim frequency decreases as 

the vehicle age increases (Ismail & 

Zamani, 2013; Wagh & Kamalja, 2017), 

while it increases as the vehicle cubic 

capacity increases (Ismail & Zamani, 

2013). Zamani and Ismail (2014) 

discovered that policyholders with non-

comprehensive coverage are more likely to 

file a claim for a third-party bodily injury 

claim. Policyholders with foreign vehicles 

file more claims than those with domestic 

vehicles (Ismail & Zamani, 2013; Zamani 

& Ismail, 2014). Gilenko and Miranova 

(2017) used vehicle class as opposed to 

vehicle make in their study. They 

discovered that policyholders with high-

class vehicles are more likely to file claims. 

Other research has found that 

policyholders who have a no-claim 

discount advantage (Wagh & Kamalja, 

2017), a lot of driving experience (Gilenko 

& Miranova, 2017), a high deductible 

(Gilenko & Miranova, 2017) and female 

drivers (Gilenko & Miranova, 2017; Wagh 

& Kamalja, 2017) are less likely to file 
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claims. 

 

Prior research primarily focused on 

the development of regression models 

using either a classical or Bayesian 

approach, but not both, especially using 

Malaysian insurance data. This is because 

model fitting in the classical approach is 

usually done by maximizing log-

likelihood, while model fitting in the 

Bayesian approach is usually done by 

minimizing deviance. Even though the 

underlying concept for estimation is 

similar for both approaches, the Bayesian 

approach uses iterations for convergence, 

while the classical approach uses the 

closed-form for the estimator directly if 

one can be obtained. 

 

This paper was motivated by the 

need to compare zero-inflated regression 

models using both frequentist and 

Bayesian approaches for Malaysian 

insurance claim frequency data. For a fair 

comparison, mean absolute deviation 

(MAD) and mean squared prediction error 

(MPSE) are used to select the best model. 

The effects of certain factors can be 

investigated using Malaysian insurance 

claim frequency data as a case study to 

determine which model and covariate are 

appropriate and significant in describing 

the behaviour of the data. 

 

This paper contributes to a better 

understanding of how to compare models 

with different bases of ideas using MAD 

and MPSE. Specifically, the classical 

approach estimates parameters solely 

based on data, while the Bayesian 

approach estimates the parameters based 

on a prior understanding of how individual 

factors affect the overall model. Readers 

will find a coding example on model fitting 

in the appendix, which will aid them in 

developing other Bayesian regression 

models. 

 

The paper is organized as follows. 

The background information of Malaysian 

motor insurance and the development of 

classical and Bayesian zero-inflated 

regression models are discussed in Section 

2. The results of the model fittings for 

various types of claims are discussed in 

Section 3. The final section provides a 

summary of the research, some concluding 

remarks as well as limitations and 

suggestions for future studies. 

 

 

2. DATA AND MODELS 

 

Malaysian motor insurance claim 

frequency data from 2001 to 2003 was 

used in this study. The covariates for 

modelling data were chosen based on their 

availability and suggestions from previous 

studies. Table 1 lists the covariates and 

their categories. 

 

Table 1.  Covariates and their categories 

Covariates Coverage type 
Vehicle 

age 

Vehicle cubic 

capacity 

Vehicle 

make 

1 Comprehensive 0-1 years 0-1000 cc Local 1 

2 
Non-

comprehensive 
2-3 years 1001-1300 cc Local 2 

3  4-5 years 1301-1500 cc Foreign 1 

4  6-7 years 1501-1800 cc Foreign 2 

5  8+ years 1801+ cc Foreign 3 

 

The data was separated into three 

claim types, which are then classified into 

risk classes. The three types of claim data 

are own damage (OD), third-party bodily 

injury (TPBI) and third-party property 

damage (TPPD). Each claim type is 
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described by three major categorical 

covariates, which are vehicle age, vehicle 

cubic capacity and vehicle make. An 

additional risk factor known as coverage 

type was included for TPBI and TPPD 

claims.  

The zero-inflated index proposed 

by Puig and Valero (2006) was used to 

detect the presence of excess zeroes in the 

data. The zero-inflated index for OD, TPBI 

and TPPD claim frequencies are 0.98, 0.96 

and 0.92, respectively. Since the index 

values are positive, the three datasets have 

an excess of zero-valued observations, 

implying that the datasets have a lot of no-

claim counts. The suggestion is also 

backed up by the dispersion index, which 

shows that the dispersion index for OD, 

TPBI and TPPD are 402, 216 and 207, 

respectively. It is not surprising that the 

dispersion indices are huge since excess 

zeroes in the data are some of the 

contributors to overdispersion (Wagh & 

Kamalja, 2018). The zero-inflation 

property for each type of claim can also be 

depicted visually, as shown in Figure 1, 

where each type of claim has a huge spike 

at zero counts. 

 

 
Figure 1. Claim frequency histogram for the three types of claims. 

 

As the study aims to compare the classical and Bayesian zero-inflated 
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regression models, the two pioneering 

zero-inflated regression models, which are 

the zero-inflated Poisson and the zero-

inflated negative binomial regression 

models, have been developed via classical 

and Bayesian approaches. When 

developing the regression model, it is 

assumed that the covariates have no direct 

or indirect effect on the excess in the zero 

counts. Hence, the covariates are only 

related to the mean parameter of the non-

inflated distributions, where they describe 

the mean claim frequency for anyone who 

fits any combination of covariate 

categories. 

2.1 Zero-inflated Poisson 

regression model 

 

Let 𝑌𝑖 be a random variable that 

represents the number of claims in risk 

class 𝑖 that follows a zero-inflated Poisson 

(ZIP) distribution with rate 𝜆𝑖 and 

proportion 𝑝𝑖. The mean and variance for 

ZIP distribution are given by (1 − 𝑝𝑖)𝜆𝑖 
and (1 − 𝑝𝑖)𝜆𝑖(1 + 𝑝𝑖𝜆𝑖), respectively 

(Ismail & Zamani, 2013). The probability 

mass function (pmf) for the ZIP 

distribution for 𝜆𝑖, 𝑝𝑖 > 0 is given as 

 

 
   

   

1 exp   ; 0

Pr | ,
.1 exp   ; 0

!

i

i i i i
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p p y
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y



 

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
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

                              (1) 

 

The frequentist regression approach can be 

implemented by applying appropriate link 

functions. Logit link with intercept was 

used for proportion parameter 𝑝𝑖, since 

there is no prior information that any of the 

covariates considered have a direct or 

indirect relationship to the logit link model. 

The cost of including all variables in the 

logit link model is higher than the cost of 

excluding those variables. For rate 

parameter 𝜆𝑖, log link was used. The link 

functions for 𝑝𝑖 and 𝜆𝑖 are 

 

 logit ln
1

i
i

i

p
p

p


 
  

 
                                                   (2) 

 

and 

 

   ln ln T

i i ie  X β ,                                                      (3) 

 

respectively, where 𝜏 is the Bernoulli 

intercept, 𝑿 is the vector of covariates, 𝜷 is 

the vector of coefficients for covariates and 

𝑒𝑖 is the exposure data. The parameters for 

the link functions in (2) and (3) can be 

rewritten in another form as 𝑝𝑖 = [1 +
exp⁡(−𝜏)]−1 and 𝜆𝑖 = 𝑒𝑖exp⁡(𝑿𝑖

𝑇𝜷), 
respectively. The likelihood function for 

the ZIP model is 

 

           
1 1

| , exp ln 1 exp ln 1 ln ln !
k n

i i i i i i i i

i i k

L p p p y y  
  

 
           

 
 y λ p

,

 (4) 

 

where 𝑖 = 1,2, … , 𝑘 is the zero-valued 

observations and 𝑖 = 𝑘 + 1, 𝑘 + 2, … , 𝑛 is 

the non-zero observations. Parameters 𝑝𝑖 

and 𝜆𝑖 are substituted into the log of the 

likelihood function shown in (4), which 

yields the following 
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   
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           (5) 

 

2.2 Zero-inflated negative binomial 

regression model 

 

Let 𝑌𝑖 be a random variable that 

represents the number of claims in risk 

class 𝑖 which follows zero-inflated 

negative binomial (ZINB) distribution 

with rate 𝜆𝑖, proportion 𝑝𝑖 and dispersion 

𝑟. The reparametrized pmf for ZINB 

distribution is 
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            (6) 

 

The mean for reparametrized ZINB 

distribution is (1 − 𝑝𝑖)𝜆𝑖, while its 

variance is (1 − 𝑝𝑖)𝜆𝑖(1 + 𝑟𝜆𝑖 + 𝑝𝑖𝜆𝑖) 

(Ismail & Zamani, 2013). The likelihood 

function for re-parameterized ZINB given 

in (6) is 
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               (7) 

 

where 𝑖 = 1,2, … , 𝑘 is the zero-valued 

observations and 𝑖 = 𝑘 + 1, 𝑘 + 2, … , 𝑛 is 

the non-zero observations. Using the link 

functions in (2) and (3), parameters 𝑝𝑖 and 

𝜆𝑖 are substituted into the log of the 

likelihood function in (7) which yields 
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            (8) 

 

The estimated coefficients were 

obtained using package 𝑝𝑠𝑐𝑙 (Jackman et 

al., 2017) of R programming language. The 

ZIP regression model is fitted by default, 

but if the distr command in R is changed to 

negbin, the ZINB regression model is fitted 

instead. The package estimates the 

parameters by maximizing the log-

likelihood function. 

 

2.3 Bayesian approach 
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Prior distributions with minimal 

information for each covariate were 

considered since only the direction of each 

covariate’s effect, i.e., positive or negative, 

on the mean of the claim frequency is 

known. Non-informative priors were used, 

where the coefficients, 𝜏 and 𝜷, follow a 

normal distribution with a mean of 0 and a 

large variance. Since some of the factors 

may have a positive or negative effect on 

the mean of the claim frequency, it is fair 

to use the normal distribution with support 

from the real number line. An extra non-

informative prior for dispersion 𝑟 is 

required for the ZINB model, with the 

mean set to 1 and its variance set to 1000. 

Given that the dispersion is positive, it is 

reasonable to select a prior distribution for 

the dispersion parameter that has support 

on the positive real number line, such as 

the gamma distribution. Therefore, the 

non-informative priors are 𝜏~𝑁(0,1000), 
𝛽𝑗~𝑁(0,1000) and 𝑟~Γ(0.001,0.001) for 

𝑗 = 1,2, … ,12. The probability density 

function (pdf) for 𝑟, 𝜏 and 𝜷 are  

 

   0.999Pr exp 0.001 ,r r r                                                   (9) 
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and 
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respectively. The preceding pdfs have been 

simplified using a proportional sign that 

absorbs all of the proportional constants in 

each distribution. The joint priors for ZIP 

and ZINB are 
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respectively. The joint prior for the ZIP 

model consists of the product of prior 

distributions for parameters 𝜏 and 𝜷, while 

the joint prior for the ZINB model consists 

of the product of prior distributions for 

parameters 𝑟, 𝜏 and 𝜷. Each parameter is 

assumed to be independent of one another. 

The posterior distribution is generally 

defined as the product of the likelihood 

function and its corresponding prior 

distributions. The joint posterior for ZIP is 

given as 
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while the joint posterior for ZINB is given as 
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The Markov chain Monte Carlo 

simulation technique was used to estimate 

the coefficients for covariates in the 

Bayesian approach. Package R2jags 

developed by Su and Yajima (2015) was 

used to estimate parameters in a Bayesian 

context. The coefficients were estimated 

using this package by minimizing the 

deviance. Appendix A contains a reference 

algorithm for estimating parameters of the 

ZIP regression model for OD claims using 

the Bayesian approach. The algorithms can 

be modified for the Bayesian ZINB 

regression model. A total of 100,000 

iterations were obtained for the estimates, 

with the first 50,000 iterations discarded. 

For the remaining 50,000 iterations, every 

alternate iteration was kept for estimating 

the coefficients of the parameters.  

 

3. RESULTS AND DISCUSSIONS 
 

The results of model fittings based 

on ZIP and ZINB models using both 

classical and Bayesian approaches for OD, 

TPBI and TPPD claim count data are 

summarized in Table 2, Table 3 and Table 

4, respectively. Both frequentist and 

Bayesian regression models were 

compared using MAD and MPSE with 

their respective formulae: 𝑀𝐴𝐷 = 1/
𝑛∑ |𝑦𝑖 − �̂�𝑖|

𝑛
𝑖=1  and 𝑀𝑃𝑆𝐸 = 1/

𝑛∑ (𝑦𝑖 − �̂�𝑖)
2𝑛

𝑖=1 , where �̂�𝑖 is the predicted 

claim count for policyholders in the 𝑖th risk 

class. The model with the smallest MAD 

and MPSE was selected as the best model 

for describing the insurance claim 

frequency. 

 

According to Table 2, the 

regression estimates for the same 

distribution-based models are similar only 

for estimates that are significant at a 5% 

significance level. The Bayesian zero-

inflated Poisson model is the best since it 

gives the smallest MAD and MPSE. The 

coefficient of vehicles aged 2 to 3 years for 

OD claims indicates that policyholders 

who own a vehicle that is 2 to 3 years old 

have the highest tendency to file claims. 

On the other hand, those with Local 2 

vehicle make have the lowest tendency to 

file claims. The OD claim frequency 

decreases as the vehicle age increases. The 

estimated proportion of no-claim is 0% 

under the Bayesian ZIP model, indicating 

that the model is overfitting the data. This 

may also suggest that the excess zeroes in 

the data are sufficiently explained when 

the covariates are included. 
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Table 2.  Parameter estimates for frequentist and Bayesian regression (OD data) 

Covariates 
ZIP ZINB 

Frequentist Bayesian Frequentist Bayesian 

Intercept -3.014* -2.701* -3.263* -2.813* 

2–3 years 0.549* 0.548* 0.666* 0.660* 

4–5 years 0.531* 0.530* 0.588* 0.586* 

6–7 years 0.453* 0.451* 0.457* 0.447* 

8+ years 0.248* 0.238* 0.357* 0.341* 

1001–1300 cc -0.123* -0.419* 0.093 -0.283* 

1301–1500 cc 0.061* -0.249* 0.433* 0.025 

1501–1800 cc 0.318* 0.519 0.530* -3.838 

1801+ cc 0.380* -0.521 0.641* 3.939 

Local 2 -0.296* -0.570* -0.211* -0.404* 

Foreign 1 -0.253* -0.229* -0.324* -0.348* 

Foreign 2 0.148* 0.174* 0.279* 0.269* 

Foreign 3 -0.059* 0.008 -0.234* -0.116 

𝝉 -13.250 -28.906* -13.710 -29.600 

𝒓 - - 7.250 6.030 

Log-likelihood -3983.70 -4108.96 -2183.73 -2857.21 

MAD 35.16 25.78 51.44 33.24 

MPSE 6095.04 2908.77 14 850.79 5905.65 

* significant at 5% 

 

 

According to Table 3, the 

regression estimates for the same 

distribution-based models are similar only 

for estimates that are significant at a 5% 

significance level. The Bayesian zero-

inflated Poisson model is the best since it 

gives the smallest MAD and MPSE. The 

policyholders for TPBI claims who owned 

a vehicle that is more than 8 years old have 

the highest tendency to file claims. On the 

other hand, those with Foreign 1 vehicle 

make have the lowest tendency to file 

claims. The TPBI claim frequency 

increases as the vehicle age increases. The 

estimated proportion of no-claim 

approximates 3.6% under the Bayesian 

ZIP model. 
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Table 3.  Parameter estimates for frequentist and Bayesian regression (TPBI data) 

Covariates 
ZIP ZINB 

Frequentist Bayesian Frequentist Bayesian 

Intercept -5.947* -5.916* -5.863* -5.744* 

Non-

comprehensive 
0.397* 0.395* 1.111* 1.117* 

2–3 years 1.301* 1.300* 1.401* 1.409* 

4–5 years 1.498* 1.497* 1.576* 1.584* 

6–7 years 1.506* 1.505* 1.178* 1.186* 

8+ years 1.510* 1.508* 1.082* 1.081* 

1001–1300 cc -0.051 -0.079* 0.084 -0.014 

1301–1500 cc 0.050 0.021 0.342* 0.229* 

1501–1800 cc 0.180* 1.006 0.564* -8.312 

1801+ cc 0.040 -0.856 0.183 8.760 

Local 2 0.013 -0.013 -0.418* -0.488* 

Foreign 1 -0.229* -0.227* -0.119 -0.122 

Foreign 2 0.070 0.073* 0.327* 0.319* 

Foreign 3 -0.213* -0.203* -0.449* -0.407* 

𝝉 -3.253* -3.293* -12.940 -30.185* 

𝒓 - - 1.178 1.151 

Log-likelihood -4156.35 -4188.94 -2399.59 -2415.74 

MAD 5.28 5.26 9.40 9.09 

MPSE 160.27 159.33 600.25 555.34 

* significant at 5% 

 

 

According to Table 4, the 

regression estimates for the same 

distribution-based models are similar only 

for estimates which are significant at a 5% 

significance level. The Bayesian zero-

inflated Poisson model is the best since it 

gives the smallest MAD and MPSE. The 

policyholders for TPPD claims who own a 

vehicle that is 6 to 7 years old have the 

highest tendency to file claims. On the 

other hand, those with Local 2 vehicle 

make have the lowest tendency to file 

claims. The estimated proportion of no-

claim approximates 0.5% under the 

Bayesian ZIP model. 

 

  



 

Malaysian Journal Of Science 41(2): 16-29 (June 2022) 

 26   
 

Table 4.  Parameter estimates for frequentist and Bayesian regression (TPPD data) 

Covariates 
ZIP ZINB 

Frequentist Bayesian Frequentist Bayesian 

Intercept -4.446* -4.111* -4.507* -4.166* 

Non-

comprehensive 
0.463* 0.448* 1.169* 1.201* 

2-3 years 0.963* 0.958* 1.095* 1.095* 

4-5 years 1.018* 1.015* 1.070* 1.066* 

6-7 years 1.045* 1.041* 0.724* 0.721* 

8+ years 0.781* 0.764* 0.454* 0.435* 

1001-1300 cc -0.024 -0.339* 0.160* -0.126 

1301-1500 cc 0.129* -0.194* 0.601 0.271* 

1501-1800 cc 0.359* 0.705 0.761* 9.630 

1801+ cc 0.409* -0.676 0.521* -9.210 

Local 2 -0.338* -0.625* -0.615* -0.778* 

Foreign 1 -0.378* -0.359* -0.237* -0.253* 

Foreign 2 -0.276* -0.253* -0.134 -0.147 

Foreign 3 -0.523* -0.440* -0.504* -0.395* 

𝝉 -5.182* -5.306* -12.990 -30.270* 

𝒓 - - 1.366 1.320 

Log-likelihood -7251.97 -7325.05 -3151.29 -3208.20 

MAD 13.35 11.07 25.57 16.53 

MPSE 1091.81 716.23 4929.45 1878.08 

* significant at 5% 

 

 

4. CONCLUSIONS 
 

The purpose of this study is to 

compare frequentist regression models 

with Bayesian regression models using the 

Malaysian motor insurance claim count 

data. Two regression models, namely zero-

inflated Poisson and zero-inflated negative 

binomial models were developed using 

classical and Bayesian approaches. The 

existence of zero inflation in the data has 

been identified. This study focused on 

three types of motor insurance claims in 

Malaysia from 2001 to 2003, which are 

OD, TPBI and TPPD claims. Four factors 

were considered in the development of the 

regression models, namely coverage type, 

vehicle age, vehicle cubic capacity and 

vehicle make. Since there is no prior 

information on how these factors affect the 

frequency of count, non-informative priors 

for the coefficients of the covariates were 

chosen. 

 

The model fittings showed that the 

estimated regression parameters for the 
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same model are similar if the estimates are 

significant at a 5% significance level. 

Based on the MAD and MPSE, zero-

inflated Poisson models outperform zero-

inflated binomial negative models for both 

frequentist and Bayesian approaches. 

However, when the frequentist and 

Bayesian approaches were compared, 

models from the Bayesian approach 

outperform those from the frequentist 

approach. The frequentist models resulted 

in larger log-likelihood compared to 

Bayesian models since the latter models 

include non-informative priors. It is 

believed that the log-likelihood for 

Bayesian models will improve if the right 

informative prior is applied. 

 

For each type of claim, the 

regression models indicate that vehicle 

age, coverage type and vehicle make are 

significant in determining the claim 

frequency. While vehicle age and coverage 

type have a positive effect on the claim 

frequency, vehicle make has a negative 

effect. In other words, coverage type and 

vehicle age increase the mean of the claim 

frequency, while vehicle make decreases 

the mean of the claim frequency. The 

vehicle cubic capacity does not exhibit a 

consistent and significant effect on the 

claim frequency as shown in Tables 2 to 4. 

 

It is important to note here that the 

study can be further improved by 

considering the characteristics of 

policyholders, such as gender, age, prior 

claim experience and so on. Such data are 

unavailable, but it is plausible that these 

characteristics can serve as important 

indicators in obtaining better estimates of 

the claim frequency. Other distributions, 

especially zero-inflated generalized 

Poisson, should be considered as a 

potential candidate for developing 

regression models and fittings. Before 

Bayesian modelling can be executed, the 

selection of the proper prior distributions 

for prior parameters of the zero-inflated 

generalized Poisson regression models 

must be thoroughly investigated. With 

prior knowledge from the experts or via the 

empirical Bayesian method, the use of 

better and more informative prior 

distributions can be considered. 
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APPENDIX A 

 

#install library R2jags 

library(R2jags) 

 

#Read csv data 

data  <- read.csv(file.choose(), header = T) 

attach(data) 

 

#Assign variables to data 

X  <- cbind(1, data[,c(1:16)]) 

y  <- Odcount 

E  <- exposure 

n  <- length(y) 

zip.data <- list("y","E","n","X") 

 
#Developing ZIP regression model 

modelText <- " 

model{ 

 

 #Likelihood function 

 for(i in 1:n){ 

  y[i] ~ dpois(mu[i]) 

  mu[i] <- (1-u[i])*lambda[i] + 0.00001*u[i] 

  log(lambda[i]) <- log(E[i]) + inprod(X[i,],beta[]) 

   

  #zero-inflation 

  u[i] ~ dbern(p[i]) 

  logit(p[i]) <- inprod(X[i,],alpha[]) 

 } 

 

 #prior distribution 

 for(j in 1:17){ 

  beta[j] ~ dnorm(0,0.001) 

  alpha[j] ~ dnorm(0,0.001) 

 } 

}" 

 

writeLines(modelText,"ZIP.txt") 

 

#Assigning how the estimated parameters will be displayed 

zip.params <- c(paste("beta[",i = 1:17,"]",sep = ""), paste("alpha[",i = 1:17,"]",sep= "")) 

 

#Providing initial values of the parameters 

zip.inits <- function(){list("beta" = rep(0.1,17), "alpha" = rep(0,17))} 

 

#Model fitting with fixed set.seed() to duplicate results (if necessary) 

set.seed(10) 

zip.fit <- jags(data = zip.data, inits = zip.inits, parameters.to.save = zip.params, n.chains = 

3, n.iter = 100000, n.burnin = 50000, n.thin = 2, model.file = "ZIP.txt") 


