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ABSTRACT  This paper studies the method for establishing an approximate solution of nonlinear two
dimensional Volterra integral equations (NLTD-VIE). The Newton-Kantorovich (NK) suppositions are
employed to modify NLTD-VIE to the sequence of linear two dimensional Volterra integral equation (LTD-
VIE). The proper-ties of the two dimensional Gauss-Legenre (GL) quadrature fromula are used to abridge the
sequence of LTD-VIE to the solution of the linear algebraic system. The existence and uniqueness of the
approximate solution is demonstrated, and an illustrative example is provided to show the precision and
authenticity of the method.

(Keywords: Newton-Kantorovich method, nonlinear operator, two dimensional Volterra integral equation, two

dimensional Gauss-Legendre formula.)

INTRODUCTION

Nonlinear two dimensional integral (NLTD) equations
of the second kind have been exploited in several areas,
including non homogeneous elasticity and electrostatics
(Sankar T. S.& Fabrikant V. 1.,1983). , contact problems
for bodies with complex features (Aleksandrov V. M.&
Manzhirov A. V. 19873)and (Manzhirov A. V.,1987),
radio wave propagation (Soloviev O. V.,1998), as well
as many physical, mechanical and biological
phenomena. To date, many approximate methods have
been operated and tested to achieve the solution of one-
dimensional integral equations (Karoui A. & Jawahdou
A., 2010; Maleknejad K. et al., 2011; Ezquerro J.A.at
al., 2012; Bahyrycz A. et al., 2014; Mosleh M. & Otadi
M.,2015; Chen Z.& Jiang W.,2015). However, confined
research effort has been exerted to solve two-
dimensional integral equations. A two-dimensional
differential transform for double integrals has been
promoted to solve NLTD-VIE (Tari A.et al., 2009). The
piecewise constant two-dimensional  block-pulse
functions and their operational matrices have been
invested for solving mixed NLTD Volterra-Fredholm
integral equations of the first kind (Maleknejad K. &
Mahdiani  K.,2011). Two-dimensional orthogonal
triangular functions have been exploited in (Maleknejad
K.& JafariBehbahani Z.,2012) for solving non-linear
mixed type Volterra-Fredholm integral equations. The
approximate solution of a class of two dimensional
nonlinear Volterra integral equations is given in
(Nemati S. et al.,2013)by utilizing the properties of two-
dimensional shifted Legendre functions to reduce the
solution of the integral equation to the solution of a
system of non-linear algebraic equations. In this study,
we consider the NLTD-VIE of the second kind.
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u(t, x) —jljx‘ K(t,x,y,2)G(y,z,u(y,z))dydz
f

)
= f(t,x), (t,x)e[a,b]x][c,d],
where u(t,x) e Qs unknown function,
f(t,x)e€, is presumed function, and

Q, =Clappeap the kermel K(t,X,y,z)is given
smooth function and defined in € x€),, where

QZ = C[leVz]X[st"A]
G(t,x,u(y,2))
defined in €, X (—o0,00) . The remainder of this paper

and the nonlinear function

is continuous function which is

is organized as follows. In Sections (I1) we explain the
use of the NK method to linearize the NLTD-VIE. In
Section (IlI) the GL method is used to find the
approximate solution of a sequence of the LTD-VIE.
The theorem of existence and uniqueness of the solution
is discussed in Section (I1V). In Section (V) an example
is provided to show the accuracy and efficiency of the
method. Finally, Section (V1) concludes the key ideas of
the proposed approximation method.
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LINEARIZE NLTD-VIE BY USING NK METHOD

Let us use the operator form

P(u(t,x))=0 )
to Eq. (1), we obtain
P(u(t,x)) =u(t,x)— f(t, x)

3

‘ﬁK(t'X’ y,2)G(y, z,u(y, z))dydz =0,

then we use initial iteration of NK method of the form

P/(Uy (£, )(U(t X) — Uy (€, X))+ P(U (£, )) =0, 4
to establish the approximate solution, where U, (t, X) is

the initial guess and it may be any continuous function.
The Frechet derivative of P(u(t,X)) at the initial

guess U, (t, X) is appointed as
, .1
P'(u,) = LILTOI E[P(u0 +5su)—P(uy)]

:nmz[msu
520 g du

5
1P ©

" 2 du®
_ dP(u,)

(U, +6?su)szu2}

u, 8 (0,1).

From Egs (4) and (5) we obtain

dP

(6)

(Au(t))=—P(uy(t)),
Uo
where Au(t, X) =u, (t, X) —u,(t,x), and U, (t, X) is
the initial function, then by establish the solution of
Eq.(6) for Au(t, X) the derivative is computed as

= Iiml[P(u0 +5U)—P(up) |

duf,

) 1 t x
= ng{su(t, x)—!! K(t,X,Y,2)

[G(y.2.uy(y,2) +su(y, 2))
-G (y,2,U,(y,2)) ] dydz],
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dP

du

t x
= u(t,x)—”[K(t, X, Y,2)
Uy ac (7)
GL (Y, 2., (Y, 2))u(y, 2)dydz],
where G/ (y, Z,uy(y, Z)) is the partial derivative of

G(y, z,u(y, Z)) for u(y, z). Therefore Egs.(6) and
(7) yield

Au(t,x)—H[K(t,x, y,2)Gy (Y,2,Uy(Y,2))

Au(y, z)]dydz

O (8)
= f(t.9)+ [ [[Ktxy,2)
G(y, 2,up(y, 2))]dydz —u,(t, ),
or
Au(t, x) —ﬁ Ko (t. X, Y, Z;uy ) Au(y, z)dydz
=F,(t,x),
where
Ko (t X, Y, Z;Up) =[K(t, X, Y, 2)
(10)
G'(Y,2,Uy (Y, 2))]
F,(t,X) = f(t,x)+£![|<(t,x, y,2) a

G(y,z,uo(y, Z))]dde—UO(t,X).
We observe that Eq.(9) is a linear with respect to
Au(t,x), and by solve it we find
u, (t, X) = Au(t, X) +u,(t, X), then continuing this
procedure, we get a sequence of approximate solution
u,(t,x), (m=2,3,...) from the equation

P’ (U (t, X)) Au,, (t, X) + P (u,,(t,X))=0  (12)
that is same as the equation
tx
Au_(t,x)—| || K,(t, X, y,Z;u
n )ﬂ[ ot X, Y, Z;Up) )

Au, (y,2)]dydz = F, (¢, %),

where
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Au_(t,x)=u_(t,x)—u_,(t,X), m=2,3,---,(14)
and
t X
Foa(t) = F(E )+ [ [[K(tx,y,2)
G(Y,z,u,.,(y,2))]dydz (15)

—-u.,(t,x).
Solving Eq.(13) with respect to Au, (t, X) we obtain a

sequence of approximate solution U, (t, X) .

APPROXIMATE SOLUTION BY THE GL
QUADRATURE METHOD
_C}

n,

Introducing a grid

a d
X;=c+h,

. b—
w ={ti,xj t=a+h—,

i=12,...,n, j=12,...,n,,
refer to the number of partitions in [a,b] and [c,d]
respectively, Eq. (13) becomes

where N and N,

Au, (t, %)) - ” K ot X, Y, Z3Ug)

Au,, (y, z)]dydz (16)
=F —l(tl’ ])
where
ml(t.,x,)—f(t.,x,)+jj[+<<t., P Y:2)
G(Y,z,u,4(y, 2))]dydz  (17)

m l(tH ])

The powerful technique to approximate the integration
in Eq. (16) is GL quadrature formula. It is known thet

Legendre polynomials P, (t) are orthogonal on [—1,1]

with weight W=1. Consider the GL quadrature
formula for double integral

j‘(jf(x U)dquX Z {_nzzwnzjf(sli’sﬂ)

-1\-1 (18)

+R,

(5,)) ]+ [ R, (9)dx,
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where
(ONES 2 ia) =2
; (1—sﬁ)[Pr;<sﬂ)]2 =
P, (s:)=0,i=12,...,n, (19)
2

a)nzi = Z
(1_S§i)|:Pn’1(SZi):| =1

R, (s;)=01=12,...,n (20)

are the corresponding weights or Christoffel numbers.
S;; and S,; are roots of Legendre polynomials P, (t)

and P, (t) over interval [—1,1] respectively which
have the error terms

22n1+l(n1!)4 )
R (f)= fm(), -1 1.
n @n, +)[(2n)1]’ () l<es
an(f) _ 22n2+1(n2 |)4 : f2n2 (4)1 —1< éf <1.

(2n, +1)[(2n,)1]

The GL quadrature formula for arbitrary region
[a,b]x[c, d] has form [15]
d-c
2

ﬁf(x o ~( 232
g )

where the knots X; = (b_Taj Sy +(b+7a] and

d-c d+c )
u, = 5 S, + ) We propose a new idea

that introduces a subgrids (Wnl) and (an) of |, and

(21)

|, Legendre knot points at each subintervals [a,t;] and
[c, X;] respectively. that are included in the intervals
[a,b] and [c,d] which appear in Eq.(28) that

. t—-a t+a

T = S, + ,

| 2 q 2 (22)
i=12,...n,k =121
X.—a X, +a

re="d_—g 4+ 1

? 2 " 2 (23)
1=12 K, =12,...,1,
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where T . #1{ and T . # X; . Extending GL
quadrature formula to the integral in both two
subintervals (a,ti—l and ’VC, Xj—’ in Eq. (16), we get

= X: —C
Au (Tr?l,,rr) (tlTaj( 12 }
i
zi;i ( Tois Treg T T3 Yo )
Au, T:fu nzl) nzkz} (24)
=Fm—l(Tr:1|'Tnzj )’
i=12,...,n,j=L2,...,n,
n=2,...,1,r,=12,.,1,
where
Fm_l(rr?l,rr?z] )= f(rr?1 Tr?zj)
2 2
j: Ei*<(f&,f£pr%,r$j) (25)
k=1| K
G(r&,,rfj,u (rn,,r ))a)nlkla)nzsz
-u, (rnl,,rnzj)

Eq.(25) is a linear algebraic system of
(n,xn,)x(l,x1,) equations and
(n1 X1, ) x (I, %
achieved of this system, then it has unique solution in
terms of Au,,(t, X), (m =2, 3,...). From eq.(14) it
follows that

|2) unknowns. If the non singularity is

u,(tx)=A,tx)+u, ,(tx), m=23... (26)

CONVERGENCE ANALYSIS

Using the general theorem of NK method and their
applications to functional equations, we state the
following theorem for successive approximations which
are characterized by Eq. (13).

First, since f(t,x), U,(t,Xx), K(t,x,Y,2), G(),
G'(¢) and G"(<) are continuous in their domain of

definitions, then they are bounded ([16], pp 33), such
that
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[ (t,3)| < My, |ug (t, X)| < M, | K (L, X, Y, 2)| < M,
G(t, X, Uy (t, X))| < M, |G'(t, X, Uy (t, X))| < M,

G"(t, X, Uy (t, X))| < M.
Then, we use the majorant function [7]

P(t) =n(t—1))" —(1+nd)(t—t,) +<, 27
where 77 and & are nonnegative real number. Let

m=M;M(b-a)(c—-d)

Theorem: Let the operator P(X) =0 in Eq. (3) is
defined in Q={Ue€Cp,ppeq JU—Us| <R} and
has a  continuous second derivative
Oy ={U € Cpyppqea Ju—tp] <1} 1f
1) The linear VIE in Eqg. (13) has a resolvent kernel
I'(t, x; 1) where ||F|| < M3M58M3M5(b_a)(°_d),

9
1+né’
3) |P"()| <1,
Then eg. (1) has a unique solution U’ (t,X)in the

closed ball €, and the sequence U, (t,X), m>0 of
successive approximation

in

2) |Au| <

28)

where Au_ (t,x) =u_ (t,x)—u_ ,(t,X) converges to

the solution U (t, X) . The rate of convergence is given

SET

Proof: It is shown that Eq.(3) is reduced to Eq. (9).
Since Eq. (9) is a linear integral equation of second kind

for Au(t, x), then it has a unique solution in term of
Au(t, X) provided that its kernel K, (t, X, Y, Z;U,) is

<[
1+né

12,...  (29)

continuous function. Hence the existence of I', is
achieved.

To prove I, is bounded we need to find the resolvent

kernel I'y(t,X,y,Z;uU,) of Eg. (9). Assume the
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integral operator V' from Cp, e a1 = Cranpear 15

given by
Z=V(Au),

t x
Z(t,x) :”[Ko(t,x, Y, Z;U,) (30)

Au(y, z)]dydz,

where K, (t,X,Yy,Z;uU,) is defined in Eq.(10).
According to Eq. (9), Eq. (30) can be written as
Au—V(Au) = F,(t). (31)

The solution Au” of Eq. (31) is written in terms of F;
as

AU =F+B(F), (32)
where B is an integral operator and can be represented
as a power of V' ([18], Theorem 1, pp. 378)

B(F,)=1+V(F)+V*(F)+-+V"(F)+, (33)

and it is well known that the powers of V are also
integral operators . In fact

Z, =V",

Z, (t,x) :j‘.x[[K“O(t,x, Y, Z;U,) (34)

Au(y,z)]dydz,(n=1,2,...),

where KQ is the iterated kernel, Substituting Eq. (34)

into Eq. (32) we obtain the solution of eq. (31) which is
of the form

AU’ (t, X) = F(t, x)

t X
+”[F0(t,x, Y, Z;U,) (35)
FO(y’ Z)]dde!
where
Fo(t,x,y,z,uo)=§,K&'”(t,x,y.z;uo), (36)

=0
where I, (t, X, Y,Z,U,) is the resolvent kernel. Next,

we state that the series in EQq.(35) is convergent
uniformly for all t €[a,b] and X €[c,d]. Since

41

Kot X, ¥, 2:U)| = [K (8, X, ¥, 2)[|G (Y. 2, Uy (. 2))]
<M,M..

Let M =M;M,, then by mathematical induction we

obtain

@37)

t X
‘Koz(t,x, y,z,uo)‘ £”|K0(t,x, Y, Z;U,)

Ko (t, X, Y, Z;U,)| dydz
_M2(b-a)d-0)
Y

t x
‘Kg(t,x, Y, z,uo)‘ < ”|K0(t,x, Y, Z;U,)

K2(t, %, ¥, 2:U,)| dydz
_M¥(b-a)*(d -c)’
B (2)!

t x .
‘Kg(t, X, Y, z,uo)‘ < ”|K0(t,x, Y, Z;U,)

Kot X, Y, Z; uo)‘ dydz

_Mp-a)d-o"
B (n=1)!

then

[Tl = [BER)] < 3 Ks ™ t.x, v, ziu)],
-0

ja(b—a) (c—d)’

<3'M ey,
j=0 J

= (b-a)l(c—d)’

ZMJZ_:;MJ i ,

— MeM (b-a)d—)
Therefore, the infinite series in Eq. (36) for

I, (t, X, ¥, Z;u,) converges uniformly for all

t e[a,b] and x [c,d]. Now, we prove

||P”(u)|| <, forall u(t,x) € Q,. Itis shown that the
second derivative P"(u,)(u) of nonlinear operator
P(u) at the point U, refres to the bilinear operator i.e.
P"(u,)(u) = B(u, u,) ([18], pp. 506). By the
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definition of the second derivative, P"(u,)(u) has the
form

P”(uo)u_llml[P(u +5u)—P'(u)],
. 1(d°P 1d%P
=lim=| —-(u, ) sU + = —(u, +0st)s’u” |,
HOS[dUZ(O) 2du3(o ) J
_dp
du?|

2

then the norm of has the estimate

d2
du?

HUH<1 HUH<1

ﬁ[K(t,x, Y, 2)

G"(y,z,uy(Y,2))
u(y, 2)u(y, z)]dydz
<M,M,(b—a)(c—d).
Therefore, the second derivative exist is bounded, that

implies U” (t, X) is the unique solution of operator

equation (3) ([18], Theorem 6, pp. 532).
The rate of convergence is given by [17]

Hu*—umué(lfngj ﬁ n=12.. o)

NUMERICAL RESULTS

Our aim in this section to show the ability of the NK
method for solving the nonlinear integral equations of
Volterra type by giving an example. For computing the
result in each table. We use MATLAB VRa 2008.

Example: consider the following integral equation

u(t, x) —‘H(y2 +e??)u?(y, z)dydz

=x%' +ix7 —ix7e2t —%xst, (39)
t € [0,1]x[0,1].

Table 1. Numerical result for Eq. (39).
n=n,=21=1,=5

h =h, =0.5,u,(t, x) = xt*.

m. &,

1 0:032626108681354
2 0:010379355154074
3. 0:003531303306024
4 0:001225693869725
5 4:282749605E-004

10. 2:266046910E -006
20 6:3682836782E -011

Table 2. Numerical result for Eqg. (39).
n=n,=21l=I,=5
h =h, =0.5,u,(t, X) = Vxt.

&

3

u

0:032626108681354
0:051110800360088
0:025183884200234
0:012873335033743
0:006694764010190
2:732561754E - 004
4:722354158E - 007
6:416467357E -011

w N P
LRNEo s v

Table 1 shows that few iterations are needed for U, (t)

to be very close to U"(t), while Table 2 refers that if

we choose another initial guess that far from the exact
solution, we need more iteration to the good

approximate solution. Notations used here are: n, and
n, are the number of partitions on [a,b] and [c,d]
respectively, |, and |, are the number of subpartitions
on (a,t) and (c,X;) respectively, i=12,...,n,

J=12,...,n, where mis the number of iterations
and

(40)

&y

CONCLUSION

In this paper, the NK method is offered to solve the
NLTD-VIE. We suggested a new idea by introducing a
k k

nioand 7.7,

i=L2,...,n, j=12,...,n, and k; =12,...,1,,
k,=12,...,1, which are contained in [a, i] and

subgrid of collocation points 7

[c, Xj]. The theorem of existence and uniqueness of

42
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approximate solution is introduced based on the general
theorems of Kantorovich. The numerical example is
given to show the efficiency of the method.
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