THE UPPER DOUBLE GEODETIC NUMBER OF A GRAPH

A.P. Santhakumaran* and T.Jebaraj

Department of Mathematics, St. Xavier's College (Autonomous), Palayamkottai-627 002, India. Department of Mathematics, C.S.I. Institute, of Technology, Thovalai - 629 302, India.

*apskumar1953@yahoo.co.in (Corresponding author) Received on 30th May 2011, accepted in revised form 16th Dec 2011

ABSTRACT For vertices x and y in a connected graph G of order n, the distance d(x,y) is the length of a shortest x-y path. An x-y path of length d(x,y) is called an x-y geodesic. The closed interval I[x,y] consists of all vertices lying on some x-y geodesic of G, while for $S \subseteq V$, $I[S] = \bigcup_{x,y \in S} I[x,y]$. A set S of vertices in G is called a double geodetic

set of G if for each pair of vertices x,y there exist vertices $u,v \in S$ such that $x,y \in I[u,v]$. The double geodetic number dg(G) is the minimum cardinality of a double geodetic set. Any double geodetic set of cardinality dg(G) is called dg-set of G. A double geodetic set in a connected graph G is called a minimal double geodetic set if no proper subset of S is a double geodetic set of G. The upper double geodetic number dg+(G) of G is the maximum cardinality of a minimal double geodetic set of G. The upper double geodetic numbers of certain standard graphs are obtained. It is proved that for a connected graph G of order n, dg(G) = n if and only if dg+(G) = n. It is also proved that dg(G) = n-1 if and only if dg+(G) = n-1 for a non-complete graph G of order G having a vertex of degree G with G with G and G with G with G and G with G is the minimum cardinality of G and G with G is the minimum cardinality of G of order G having a vertex of degree G and G with G is the minimum cardinality of G of order G having a vertex of degree G is the maximum cardinality of G and G is the minimum cardinality of G of order G having a vertex of degree G of order G is the maximum cardinality of G is the

(Keywords: double geodetic set, double geodetic number, upper double geodetic set, upper double geodetic number)

INTRODUCTION

By a graph G = (V, E), we mean a finite undirected connected graph without loops or multiple edges. The order and size of G are denoted by n and m, respectively. For basic graph theoretic terminology, we refer to Harary [4]. A vertex v is said to lie on an x-y geodesic P if v is a vertex of P including the vertices x and y. For any vertex u of G, the eccentricity of u is $e(u) = \max\{d(u, u)\}$ $v): v \in V$. A vertex v is an eccentric vertex of u if e(u) = d(u, v). The radius rad G and diameter diam G of G are defined by $rad G = min\{e(v) : v \in V\}$ and $diam \quad G = \max \{e(v) : v \in V\},\$ respectively. The neighborhood of a

vertex v is the set N(v) consisting of all vertices u which are adjacent with v. A vertex v is an extreme vertex of G if the subgraph induced by its neighbors is complete. Weak extreme vertices are introduced in [8]. A vertex v in a connected graph G is called a weak extreme vertex if there exists a vertex u in G such that $u, v \in I[x, y]$ for a pair of vertices x, y in G, then v = x or v = y. It is observed that each extreme vertex of a graph is weak extreme. For the graph G in Figure 1, it is clear that the pair v_2 , v_5 lies only on the $v_2 - v_5$ geodesic and so v_2 and v_5 are weak extreme vertices of G. It is easily seen that each vertex of G is weak extreme.

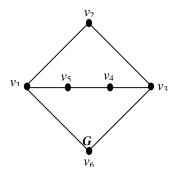


Figure 1

The closed interval I[x, y] consists of all vertices lying on some x-y geodesic of G, while for $S \subseteq V$, $I[S] = \bigcup_{x,y \in S} I[x,y]$. A set S of vertices is a

geodetic set if I[S] = V, and the minimum cardinality of a geodetic set is the geodetic number g(G). A geodetic set of cardinality g(G) is called a g-set of G. A geodetic set S in a connected graph G is a minimal geodetic set if no proper subset of S is a geodetic set of G. The upper geodetic number $g^+(G)$ of G is the maximum cardinality of a minimal geodetic set of G. The geodetic number of a graph was introduced in [1, 5] and further studied in [2, 3, 6]. It was shown in [5] that determining the geodetic number of a graph is an NP-hard problem.

A set S of vertices in G is called a double geodetic set of G if for each pair of vertices x, y there exist vertices u,v in S such that $x, y \in I[u,v]$. The double geodetic number dg(G) is the minimum cardinality of a double geodetic set. Any double geodetic set of cardinality dg(G)is called dg-set of G. A double geodetic set in a connected graph G is called a minimal double geodetic set if no proper subset of S is a double geodetic set of G. The upper double geodetic number dg+(G) of G is the maximum cardinality of a minimal double geodetic set of G. The double geodetic number of graph was introduced and studied in [8]. A detailed study of double geodetic number of a graph is found in [8]. The following theorems will be used in the sequel.

Theorem 1.1. [3] Every geodetic set of a graph G contains its extreme vertices. In particular, if the set of extreme vertices

S of G is a geodetic set of G, then S is the unique minimum geodetic set of G.

Theorem 1.2. [3] Let G be a connected graph with a cutvertex ν . Then every geodetic set of G contains at least one vertex from each component of $G-\nu$.

Theorem 1.3. [8] No cutvertex of a connected graph of G belongs to any minimum double geodetic set of G.

Theorem 1.4. [8] Every double geodetic set of a connected graph G contains all the weak extreme vertices of G. In particular, if the set W of all weak extreme vertices is a double geodetic set, then W is the unique dg-set of G.

Theorem 1.5. [8] For the complete bipartite graph $G = K_{m,n}(m, n \ge 2)$, $dg(G) = \min\{m, n\}$.

The Upper Double Geodetic Number of a Graph

Definition 2.1. A double geodetic set in a connected graph G is called a *minimal double geodetic set* if no proper subset of S is a double geodetic set of G. The *upper double geodetic number* $dg^+(G)$ of G is the maximum cardinality of a minimal double geodetic set of G.

Example 2.2. For the graph G in Figure 2.1 $S = \{v_2, v_4\}$ is a double geodetic set of G so that dg(G) = 2. The set $S' = \{v_1, v_3, v_5\}$ is a double geodetic set of G and it is clear that no proper subset of S' is a double geodetic set of G and so S' is a minimal double geodetic set of G. It is easily verified that no 4-element subset is a minimal double geodetic set and so $dg^+(G) = 3$.

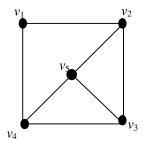


Figure 2.1

Remark 2.3. Every minimum double geodetic set of G is a minimal double geodetic set of G and the converse need not be true. For the graph G given in Figure 2.1, $S' = \{v_1, v_3, v_5\}$ is a minimal double geodetic set but not a minimum double geodetic set of G.

Theorem 2.4. For a connected graph G of order n, $2 \le dg(G) \le dg^+(G) \le n$.

Proof. Any double geodetic set needs at least two vertices and so $dg(G) \geq 2$. Since every minimal double geodetic set is double geodetic set, $dg(G) \leq dg^+(G)$. Thus $2 \leq dg(G) \leq dg^+(G) \leq n$.

Remark 2.5. The bounds in Theorem 2.4 are sharp. For any non-trivial path P, dg(P) = 2. It follows from Theorem 1.3 that $dg(T) = dg^+(T)$ for any tree T and $dg^+(K_n) = n$, $(n \ge 2)$ Also, all the inequalities in the theorem are strict. For the complete bipartite graph $= K_{r,s}$ ($3 \le r < s$), $dg(G) = r, dg^+(G) = s$ and n = r + s. (See Theorems 1.5 and 2.14)

Theorem 2.6. For a connected graph G, dg(G) = n if and only if $dg^+(G) = n$.

Proof. Let $dg^+(G) = n$. Then the vertex set V is the unique minimal double geodetic set of G. Since no proper subset of V is a double geodetic set, it is clear that V is also the unique minimum double geodetic set of G and so dg(G) = n. The converse follows from Theorem 2.4.

For the complete graph $G=K_n$, it is clear that dg(G) = n. Hence we have the following corollary.

Corollary 2.7. For the complete graph $G = K_n \ (n \ge 2), \ dg^+(G) = n.$

However, a non-complete graph G of order n can have $dg(G) = dg^+(G) = n$. For the graph G given in Figure 1, all the vertices are weak extreme and so it follows from Theorem 1.4 that $dg(G) = dg^+(G) = 6$.

Theorem 2.8. If G is a connected graph of order n with dg(G) = n-1, then $dg^+(G) = n-1$.

Proof. Since dg(G) = n-1, it follows from Theorem 2.4 that $dg^+(G) = n$ or $dg^+(G) = n-1$. It follows from Theorem 2.6 that $dg^+(G) = n-1$.

A vertex in a graph G of order n is called a full degree vertex if its degree is n-1

Theorem 2.9. Let G be a non-complete connected graph. Then a full degree vertex does not belong to any minimal double geodetic set of G

Proof. Let S be a minimal double geodetic set of G containing a full degree vertex v_0 . Let $S' = S - \{v_0\}$. We claim that S' is a double geodetic set of G. Let $u, v \in V$.

Case 1. $u, v \in S$. If $v_0 \neq u, v$, then $u, v \in S'$ and so S' is a double, geodetic set of G. So assume that $u=v_0$. If v is not a full degree vertex, then there exists $v' \neq v$ such that v and v' are non-adjacent and so $u, v \in I[v, v']$ with $v, v' \in S'$. Now, if v is a full degree vertex, then since the subgraph induce by S is not complete, there exist non-adjacent vertices v', v'' in S such that $u, v \in I[v', v'']$. Thus S' is a

double geodetic set of G, which is a contradiction to S a minimal double geodetic set.

Case 2. $u \notin S$ or $v \notin S$. Since S is a double geodetic set, there exist $x,y \in S$ such that $u, v \in I[x,y]$. Since v_0 is a full degree vertex, it follows that $x \neq v_0$ and $y \neq v_0$. Thus $x, y \in S'$ and so S' is a double geodetic set of G, which is again a contradiction to S a minimal double geodetic set of G. Thus the proof is complete.

Theorem 2.10. Let G be a non-complete graph of order n with a full degree vertex v. Then $dg^+(G) = n - 1$ if and only if dg(G) = n - 1.

Proof. Let dg(G) = n - 1. Then by Theorem 2.8, $dg^+(G) = n - 1$. Let $dg^+(G) = n - 1$. Let S be a minimal double geodetic set of cardinality n - 1. By Theorem 2.9, $v \notin S$. Suppose that $dg(G) \le n - 2$. Let S' be a minimum double geodetic set of G. Then it follows from Theorem 2.9 that $v \notin S'$ and $S' \subseteq S$, which is a contradiction to S a minimal double geodetic set of G. Hence dg(G) = n - 1.

Theorem 2.11. Let G be a connected graph with a cutvertex v. Then every minimal double geodetic set of G contains at least one vertex from each component of G - v.

Proof. This follows from Theorem 1.2.

Theorem 2.12. No cutvertex of a connected graph G belongs to any minimal double geodetic set of G.

Proof. Let S be any dg-set of G. Suppose that S contains a cutvertex z of G. Let G_1 , G_2 ,..., $G_r(r \ge 2)$ be the components of G-z. Let $S_1 = S$ - $\{z\}$. We claim that S_1 is a double geodetic set of G. Let x, $y \in V(G)$. Since S is a double geodetic set, there exist u, $v \in S$ such that x, $y \in I[u,v]$. If $z \notin \{u, v\}$, then u, $v \in S_1$ and so S_1 is a double geodetic set of G, which is contradiction to the minimality of S.

Now, assume that $z \in \{u,v\}$, say z = u. Assume without loss of generality that v belongs to S_1 . By Theorem 2.11, we can choose a vertex w in $G_k(k \neq 1)$ such that $w \in S$. Now, since z is a cut vertex of G, it follows that $I[z, v] \subseteq I[w, v]$. Hence x, $y \in I[w, v]$ with w, $v \in I[w, v]$ where w, $v \in S_1$. Thus S_1 is a double geodetic set of G, which is contradiction to the minimality of S. Thus no cut vertex belongs to any minimal double geodetic set of G.

Theorem 2.13. For any tree T with k end-vertices $dg(T) = dg^+(T) = k$.

Proof. This follows from Theorems 1.4 and 2.12.

Theorem 2.14. For the complete bipartite graph $G = K_{m,n}$,

- (i) $dg^+(G) = 2$ if m = n = 1.
- (ii) $dg^+(G) = n$ if $m = 1, n \ge 2$.
- (iii) $dg^{+}(G) = \max\{m,n\} \text{ if } m, n \geq 2.$

Proof. (i) and (ii) follow from Theorem 2.13. (iii) Let X and Y be the partite sets of $K_{m,n}$. Let S be a double geodetic set of $K_{m,n}$. We claim that $X \subseteq S$ or $Y \subseteq S$. Otherwise, there exist vertices x, y such that $x \in X$, $y \in Y$ and x, $y \notin S$. Now, since the pair of vertices x, y lie only on the intervals I[x, y], I[x, t] and I[s, y] for some $t \in X$ and $s \in Y$, it follows that $x \in S$ or $y \in S$, which is a contradiction to x, $y \notin S$. Thus $X \subseteq S$ or $Y \subseteq S$. It is clear that both X and Y are double geodetic sets of $K_{m,n}$ and so the result follows.

Theorem 2.15. For any positive integers $2 \le a \le b$, there exists a connected graph G such that dg(G) = a and $dg^+(G) = b$.

Proof. If a = b, let $G = K_{1,a}$. By Theorem 2.13, $dg(G) = dg^+(G) = a$. If a < b, let $G = K_{a,b}$. It follows from Theorems 1.5 and 2.14 that dg(G) = a and $dg^+(G) = b$.

REFERENCES

- 1. F. Buckley and F. Harary, *Distance in graphs*, Addison-Wesley, Redwood City, CA, 1990.
- 2. G. Chartrand, F. Harary and P. Zhang, On the geodetic number of a graph, Networks, 39(1)(2002), 1-6.
- 3. G. Chartrand, F. Harary, H.C. Swart and P. Zhang, *Geodomination in graphs*, Bulletin of the ICA, 31(2001), 51-59.
- 4. F. Harary, *Graph Theory*, Addision-Wesely, 1969.
- 5. F. Harary, E. Loukakis and C. Tsouros, *The geodetic number of a graph*, Mathl. Comput. Modeling, 17(11)(1993), 89-95.
- 6. R. Muntean and P. Zhang, On geodomindiion in graphs, Congr. Numer., 143(2000), 161-174.
- 7. P.A. Ostrand, Graphs with specified radius and diameter, Discrete Math., 4(1973), 71-75.
- 8. A.P. Santhakumaran and T. Jebaraj, Double geodetic number of a graph, Discuss. Math. Graph Theory, to appear.