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ABSTRACT For vertices x and y in a connected graph G of order n, the distance
d(x,y) is the length of a shortest x-y path. An x-y path of length d(x,y) is called an x-y
geodesic. The closed interval I[x,y] consists of all vertices lying on some x-y geodesic of

G, while for S cV,I[S] = UI[X, y]. A set S of vertices in G is called a double geodetic
X,yeS
set of G if for each pair of vertices x,y there exist vertices u,veS such that x,yel[u,v].
The double geodetic number dg(G) is the minimum cardinality of a double geodetic set.
Any double geodetic set of cardinality dg(G) is called dg-set of G. A double geodetic set
in a connected graph G is called a minimal double geodetic set if no proper subset of S is
a double geodetic set of G. The upper double geodetic number dg+(G) of G is the
maximum cardinality of a minimal double geodetic set of G. The upper double geodetic
numbers of certain standard graphs are obtained. It is proved that for a connected graph G
of order n, dg(G) = n if and only if dg+(G) = n. It is also proved that dg(G) =n-1 if and
only if dg+(G) =n-1 for a non-complete graph G of order n having a vertex of degree

Nn—1. For every two positive integers a and b, where 2 < a < b, there exists a connected
graph G with dg(G) = a and dg+(G) = b.

(Keywords: double geodetic set, double geodetic number, upper double geodetic set,
upper double geodetic number)

INTRODUCTION

By a graph G = (V, E), we mean a finite vertex v is the set N(v) consisting of all
undirected connected graph without vertices u which are adjacent with v. A
loops or multiple edges. The order and vertex v is an extreme vertex of G if the
size of G are denoted by n and m, subgraph induced by its neighbors is
respectively. For basic graph theoretic complete. Weak extreme vertices are
terminology, we refer to Harary [4]. A introduced in [8]. A vertex v in a
vertex v is said to lie on an x-y geodesic connected graph G is called a weak
P if v is a vertex of P including the extreme vertex if there exists a vertex u
vertices x and y. For any vertex u of G, in G such that u, vel[x,y] for a pair of
the eccentricity of u is e(u) = max{d(u, vertices x, y in G, then v = x or v = y. It
v) @ veV}. A vertex v is an eccentric is observed that each extreme vertex of a
vertex of u if e(u) = d(u, v). The radius graph is weak extreme. For the graph G
rad G and diameter diam G of G are in Figure 1, it is clear that the pair v,, vs
defined by rad G = min{e(v) : v € V} and lies only on the v, — vs geodesic and so
diam G = max {e(v) : v eV}, v, and vs are weak extreme vertices of G.
respectively. The neighborhood of a It is easily seen that each vertex of G is

weak extreme.
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Figure 1

The closed interval I[x, y] consists of all
vertices lying on some
x-y geodesic of G, while for ScV, I[S] =

UI[X, y]. A set S of vertices is a
X,yeS

geodetic set if I[S] = V, and the
minimum cardinality of a geodetic set is
the geodetic number g(G). A geodetic set
of cardinality g(G) is called a g-set of G.
A geodetic set S in a connected graph G
is a minimal geodetic set if no proper
subset of S is a geodetic set of G. The
upper geodetic number g*(G) of G is the
maximum cardinality of a minimal
geodetic set of G. The geodetic number
of a graph was introduced in [1, 5] and
further studied in [2, 3, 6]. It was shown

in [5] that determining the geodetic
number of a graph is an NP-hard
problem.

A set S of vertices in G is called a

double geodetic set of G if for each pair
of vertices x, y there exist vertices u,v in
S such that x, y e I[u,v]. The double
geodetic number dg(G) is the minimum
cardinality of a double geodetic set. Any
double geodetic set of cardinality dg(G)
is called dg-set of G. A double geodetic
set in a connected graph G is called a
minimal double geodetic set if no proper
subset of S is a double geodetic set of G.
The wupper double geodetic number
dg+(G) of G is the maximum cardinality
of a minimal double geodetic set of G.
The double geodetic number of graph
was introduced and studied in [8]. A
detailed study of double geodetic number
of a graph is found in [8]. The following
theorems will be used in the sequel.

Theorem 1.1. [3] Every geodetic set of a
graph G contains its extreme vertices. In
particular, if the set of extreme vertices
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S of G is a geodetic set of G, then S is
the unique minimum geodetic set of G.

Theorem [.2. [3] Let G be a connected
graph with a cutvertex v. Then every
geodetic set of G contains at least one

vertex from each component of G —V.

Theorem 1.3. [8] No cutvertex of a
connected graph of G belongs to any
minimum double geodetic set of G.

Theorem 1.4. [8] Every double geodetic
set of a connected graph G contains all
the weak extreme vertices of G. In
particular, if the set W of all weak
extreme vertices is a double geodetic set,
then W is the unique dg-set of G.

Theorem 1.5. [8] For the complete
bipartite graph G = Knn(m, n > 2), dg(G)
= min{m,n}.

The Upper Double Geodetic Number of
a Graph

Definition 2.1. A double geodetic set in
a connected graph G is called a minimal
double geodetic set if no proper subset of
S is a double geodetic set of G. The
upper double geodetic number dg*(G) of
G is the maximum cardinality of a
minimal double geodetic set of G.

Example 2.2. For the graph G in Figure
2.1 S = {v,, v4} is a double geodetic set
of G so that dg(G) = 2. The set S’ = {vy,
V3, Vs} is a double geodetic set of G and
it is clear that no proper subset of S’ is a
double geodetic set of G and so S’ is a
minimal double geodetic set of G. It is
easily verified that no 4-element subset
is a minimal double geodetic set and so
dg*(G) = 3.
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Remark 2.3. Every minimum double
geodetic set of G is a minimal double
geodetic set of G and the converse need
not be true. For the graph G given in
Figure 2.1, S" = {vy, v3, V5} is a minimal
double geodetic set but not a minimum
double geodetic set of G.

Theorem 2.4. For a connected graph G
of order n, 2 <dg(G) <dg*(G) <n.

Proof . Any double geodetic set needs at
least two vertices and so dg(G) > 2.
Since every minimal double geodetic set
is double geodetic set, dg(G) < dg*(G).
Thus 2 < dg(G) < dg*"(G) < n.

Remark 2.5. The bounds in Theorem 2.4
are sharp. For any non-trivial path P,
dg(P) = 2. It follows from Theorem 1.3
that dg(T) = dg*(T) for any tree T and
dg*(K,) = n, (n>2) Also, all the
inequalities in the theorem are strict. For
the complete bipartite graph = K, s (3 <r
<s), dg(G) =r,dg*(G) =sand n=r + s.
(See Theorems 1.5 and 2.14)

Theorem 2.6. For a connected graph G,
dg(G) = n if and only if dg™(G) = n.

Proof. Let dg*(G) = n. Then the vertex
set V is the unique minimal double
geodetic set of G. Since no proper subset
of V is a double geodetic set, it is clear
that V is also the unique minimum double
geodetic set of G and so dg(G) = n. The
converse follows from
Theorem 2.4.

For the complete graph G=K,, it is clear
that dg(G) = n. Hence we have the
following corollary.
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Corollary 2.7. For the complete graph G
=K, (n >2), dg"(G) = n.

However, a non-complete graph G of
order n can have dg(G) = dg*(G) = n.
For the graph G given in Figure 1, all the
vertices are weak extreme and so it
follows from Theorem 1.4 that dg(G) =
dg*(G)= 6.

Theorem 2.8. If G is a connected graph
of order n with dg(G) = n-1, then
dg*(G) = n-1.

Proof. Since dg(G) = n-1, it follows
from Theorem 2.4 that dg*(G) = n or

dg*(G) = n—1. It follows from Theorem
2.6 that dg*(G) = n-1.

A vertex in a graph G of order n is called

a full degree vertex if its degree is n—1

Theorem 2.9. Let G be a non-complete
connected graph. Then a full degree
vertex does not belong to any minimal
double geodetic set of G

Proof. Let S be a minimal double
geodetic set of G containing a full degree
vertex vo. Let S” = S — {vo}. We claim
that S’ is a double geodetic set of G. Let
u,veV.

Case l.u,v eS. Ifvg#u,v, thenu, v e
S' and so S’ is a double, geodetic set of
G. So assume that u=vy. If v is not a full
degree vertex, then there exists
v’ # v such that v and v' are non-adjacent
and so u, v € I[v, v'] with v, v'eS’. Now,
if vis a full degree vertex, then since the
subgraph induce by S is not complete,
there exist non-adjacent vertices v/, v” in
S such that u, v e I[v', v"]. Thus S' is a
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double geodetic set of G, which is a
contradiction to S a minimal double
geodetic set.

Case 2. u ¢ Sorv ¢ S. Since S is a
double geodetic set, there exist x,yeS
such that u, v el[x,y]. Since vq is a full
degree vertex, it follows that x # vo and y
# Vo. Thus x, y € S and so S’ is a double
geodetic set of G, which is again a
contradiction to S a minimal double
geodetic set of G. Thus the proof is
complete.

Theorem 2.10. Let G be a non-complete
graph of order n with a full degree
vertex v. Then dg*(G) = n — 1 if and only
if dg(G) = n - 1.

Proof. Let dg(G) = n — 1. Then by
Theorem 2.8, dg*(G) = n - 1. Let dg™(G)
= n - 1. Let S be a minimal double
geodetic set of cardinality n - 1. By
Theorem 2.9, v¢S. Suppose that dg(G) <
n — 2. Let S’ be a minimum double
geodetic set of G. Then it follows from
Theorem 2.9 that ve¢S’ and S’ < S, which
is a contradiction to S a minimal double

geodetic set of G. Hence dg(G) = n — 1.

Let G be a connected
graph with a cutvertex v. Then every
minimal double geodetic set of G
contains at least one vertex from each

component of G = .

Theorem 2.11.

Proof. This follows from Theorem 1.2.

cutvertex of a
any

Theorem 2.12. No
connected graph G belongs to
minimal double geodetic set of G.

Proof. Let S be any dg-set of G. Suppose
that S contains a cutvertex z of G. Let Gy,
Ga,..., Gi(r = 2) be the components of G -
z. Let S;= S- {z}. We claim that S; is a
double geodetic set of G. Let x, y eV(G).
Since S is a double geodetic set, there
exist u, v e Ssuch that x,y e I [u,v]. Ifz
¢ {u, v}, then u, v € S; and so S; is a
double geodetic set of G, which is
contradiction to the minimality of S.
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Now, assume that z € {u,v}, say z = u.
Assume without loss of generality that v
belongs to S; . By Theorem 2.11, we can
choose a vertex w in Gy(k # 1) such that
w e S. Now, since z is a cut vertex of G,
it follows that I[z, v] < I[w, v]. Hence x,
y € I[w, v] with w, v e I[w, v] where w, v
€ S;. Thus S; is a double geodetic set of
G, which is contradiction to the
minimality of S. Thus no cut vertex
belongs to any minimal double geodetic
set of G.

Theorem 2.13. For any tree T with k
end-vertices dg(T) = dg*(T)=k.
Proof. This follows from Theorems 1.4

and 2.12.

Theorem 2.14. For
bipartite graph G = Ky, ,

the complete

(i) dg™(G) = 2 if m = n=1.
(ii)dg™(G) =nifm=1,n>2.
(iii) dg*(G) = max{m,n} if m, n > 2.

Proof. (i) and (ii) follow from Theorem
2.13. (iii) Let X and Y be the partite sets
of Knn. Let S be a double geodetic set of
Kmn. We claim that X < S or Y < S.
Otherwise, there exist vertices x, y such
that x € X, y € Y and x, y ¢ S. Now,
since the pair of vertices x, y lie only on
the intervals I[x, y], I[x, t] and I[s, y] for
somet e Xand s € YV, it follows that x e
S ory e S, which is a contradiction to x,
ygS. Thus X < Sor Y < S. It is clear that
both X and Y are double geodetic sets of
Km.n and so the result follows.

Theorem 2.15. For any positive integers
2 <a <b, there exists a connected graph
G such that dg(G) = a and dg*(G) = b.

Proof. If a = b, let G = Ky, By Theorem
2.13, dg(G) = dg'(G) = a. Ifa< b, let G
= Kap. It follows from Theorems 1.5 and
2.14 that dg(G) = a and dg*(G) = b.
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