Fish index for classifying riverine ecosystem of Peninsular Malaysia

M. Zakaria-Ismail and A. Fatimah

Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia

ABSTRACT Tolerance levels of common freshwater fishes found in the various freshwater ecosystems of Peninsular Malaysia are presented to enable calculation of the fish index (FI) in the field for river classification purpose. These tolerance levels range from 0.5 to 4.5. Smaller values are for sensitive fishes that cannot tolerate even a small change in the surrounding environment, while larger values are for fishes that can withstand a wide range of environmental changes. From the study, *Channa gachua* (family Channidae), *Clarias teijsmanni* (family Clariidae), *Glyptothorax major* and *Glyptothorax platypogonoides* (both from family Sisoridae) are considered to be the most sensitive species with tolerance value of 1 or smaller. On the other hand, *Liposarcus pardalis* (family Loricariidae) is the most tolerant fish with a tolerance level of 4.5. This species is the dominant fish in the heavily polluted riverine ecosystem. The present river classification based on fish index is similar with the river classification system based on water quality index (WQI) widely used by the Department of Environment, Malaysia. However, the FI is a much easier and cheaper index to use as compared to WQI in the classification of rivers in Peninsular Malaysia.

ABSTRAK Tahap toleransi ikan-ikan air tawar yang biasa ditemui di ekosistem air tawar di Semenanjung Malaysia dibentangkan untuk membolehkan pengiraan indeks ikan (FI) di lapangan bagi tujuan pengelasan sungai. Tahap toleransi ini bernilai di antara 0.5 dan 4.5. Nilai toleransi yang kecil adalah bagi spesies ikan yang sensitif terhadap pertukaran persekitaran di dalam sungai, manakala nilai toleransi yang besar adalah bagi ikan-ikan tidak sensitif terhadap pertukaran ini. Dari kajian yang dijalankan, spesies ikan seperti *Channa gachua* (famili Channidae), *Clarias teijsmanni* (famili Clariidae), *Glyptothorax major* dan *Glyptothorax platypogonoides* (kedua-duanya daripada famili Sisoridae) tergolong sebagai ikan-ikan yang sensitif dengan mempunyai paras toleransi 1 ataupun lebih kecil. Sebaliknya, *Liposarcus pardalis* (famili Loricariidae) adalah spesies ikan yang paling tahan terhadap pencemaran dengan mempunyai nilai toleransi 4.5. Pengelasan sungai dengan menggunakan indeks ikan (FI) yang dicadangkan dalam kertas ini menyerupai dengan pengelasan sungai menggunakan indeks kualiti air (WQI) yang digunakan oleh Jabatan Alam Sekitar, Malaysia. Walau bagaimanapun, penggunaan FI adalah lebih mudah dan murah jika dibandingkan dengan penggunaan WQI bagi pengelasan sungai-sungai di Semenanjung Malaysia.

1

(fish index, tolerance level, river classification)

INTRODUCTION

The river classification exercise initiated by the Department of Environment (DOE), Ministry of Science, Technology and the Environment, Malaysia for the last 10 years stressed the need for rapid field-based assessment approaches to classify our river ecosystems [1]. It was recognized that in saving time and money, a degree of accuracy would be sacrificed. However, the index must provide information to inform the Malaysian public of the state of our rivers on a regular basis. Also, the index must be usable within the limits of the available information, labour, expertise and financial resources. Therefore, indicators based on biological organisms seem to be the most appropriate approach.

Throughout the classification exercise of our Malaysian rivers such as Sungai Melaka [2], Selangor [3], Sungai Kesang [4] and Sungai Langat [5], several bio-indicator indices such as Shannon-Wiener index and family biotic index, were used. Unfortunately, these indices were developed in western countries for organisms in temperate environment [6, 7]. Local rivers such as Sungai Bernam, Sungai Melaka, Sungai Rompin and Sungai Selangor have been classified on the basis of the composition of algae, fish and other aquatic organisms [1, 8]. Unfortunately, the classification proposed was qualitative in nature. Besides, for a biological organism to be used as bio-indicator in river classification system, identification of the organism to species level is necessary. Therefore, the objective of this paper is to provide a fish bioindicator index that is quantitative in nature, usable within the limits of available information, and flexible enough to be useful in all riverine ecosystems in Peninsular Malaysia.

MATERIALS AND METHODS

The fish index (FI) is based on the tolerance level of fishes found in a particular area. The value is set arbitrarily on the basis of the presence of the species in a particular class of river throughout the river system studied during the river classification programme [2, 3, 4, 5]. If the species is rare and prevalent only in class I river, a value of 0.5 is selected. If the species is normally found only in class I rivers but they are common, then the tolerance level of the species is 1. Fishes occupying two classes of river will be given average values of the classes, which is 1.5, 2.5 or 3.5. Fishes mainly found in class IV river but are relatively rare, their tolerance value is 4. The most common and abundant fish in class IV river is set at 4.5. The formula used to calculate the index is as follows:

 $\begin{array}{l} s \\ FI = \sum TL_i \\ i = 1 \\ s \end{array}$

Where: FI = Fish Index; TL = Tolerance level;s = number of species

The proposed classification system of the river is similar in values with the water quality index (WQI) used by the Department of Environment, Ministry of Science, Technology and the Environment, Malaysia. Class I is used for the cleanest water body inhabited by very sensitive fish species. It is so clean that there is no need for special treatment for the water to be used as domestic water supply. A river inhabited by less sensitive fish species that requires a conventional treatment for the water to be used in water supply is classified as Class IIA. A Class IIB water body is similar with the class IIA, except that fishes present are those capable of tolerating minor disturbance. A moderately polluted river is classified as class III. An extensive treatment is required for the water to be used domestically. The fish community is dominated by groups of fishes capable of tolerating a high degree of pollution. Class IV is water body with high level of pollution. The water is suitable only for irrigation, and it is inhabited by a handful of highly pollutant-tolerant fishes.

At a selected site, fish sampling must be carried out extensively to ensure as many species are caught. In large, lowland sections of the river, fishing tools such as gill net, cast net, dip net, trap, hook-and-line with live bait and electroshocker are normally used, and fish sampling may go on for at least 24 hours. In the upper reaches of the stream, it suffices to use electroshocker for about 30-minute sampling during the day followed by dip-netting at night.

RESULTS AND DISCUSSION

Table 1 indicates the tolerance level (TL) of the fishes normally found in the major river systems in Peninsular Malaysia. The value ranged from 0.5, being the most sensitive, to 4.5, being the most tolerant species. The most sensitive fish are Glyptothorax and foratum Amblyceps platypogonoides found mainly in the unpolluted stretch of mountain stream and Chaca bankanensis found in the undisturbed lowland, forested stream. Glyptothorax platypogonoides was once very common in the upper reaches of the Gombak River but has since become locally extinct due to the construction of the Karak highway [9]. The most tolerant fish is Liposarcus pardalis, known as ikan bandaraya or ikan majlis daerah, commonly found in heavily polluted rivers. The species is native to the aquatic ecosystem of South America, introduced into Malaysian waters through aquarium trade.

On the basis of the present TL, the FI should have a value from 0.5 to 4.5. Table 2 shows the various ranges of FI for the five classification systems. Examples of how the FI is calculated, based on hypothetical species composition, are shown in Table 3. In the event that no fish is collected in a sampling area, the water body cannot be classified based on FI. Perhaps, the river is so polluted that no fish can survive in it. On the other hand, if the section of the river is close to sea, many marine fishes will frequently invade the area. As such, many fish species might be caught from the area but it cannot be classified by the present method.

The drawback of the index is that some freshwater fishes caught may not be identified to any of the fish species listed in Table 1. In this situation, the species should be omitted from the calculation or if the genus is known, a researcher might use the lowest tolerance level for the genus. As an example, if the genus of the specimen is identified as *Hemibagrus*, then the tolerance level of 1.5 should be used because it is the lowest among the three species listed in Table 1.

In a man-made aquatic ecosystem in which the fishery is mainly for recreational activities, its fish community is always controlled by regularly restocking the water body with suitable fishes to provide satisfaction to anglers. Results of FI in such an ecosystem can be misleading, and it must be used with great caution.

Table 1.	Tolerance level of	f the freshwater	fishes normally	found in the river	ne ecosystems of Peninsular
	Malaysia.				

Species	Family	Tolerance Level
Acantopsis dialuzona	Cobitidae	1.0
Amblycep foratum	Amblycipitidae	0.5
Anabas testudineus	Anabantidae	4.0
Aplocheilus panchax	Aplocheilidae	2.5
Bagarius yarrelli	Sisoridae	2.0
Barbichthys laevis	Cyprinidae	2.0
Belodontichthys dinema	Siluridae	2.0
Belontia hasselti	Belontiidae	2.0
Betta imbellis	Belontiidae	2.5
Betta pugnax	Belontiidae	2.0
Betta waseri	Belontiidae	2.0
Botia beauforti	Cobitidae	1.5
Botia hymenophysa	Cobitidae	2.0
Botia morleti	Cobitidae	1.0
Chaca bankanensis	Chacidae	0.5
Channa gachua	Channidae	1.0
Channa lucius	Channidae	2.0
Channa melasoma	Channidae	2.0
Channa micropeltes	Channidae	2.0
Channa striata	Channidae	3.5
Chela laubuca	Cyprinidae	2.0
Chela maasii	Cyprinidae	1.5
Chitala lopis	Notopteridae	1.5
Clarias batrachus	Clariidae	3.5
Clarias gariepinus	Clariidae	3.5
Clarias nieuhoffi	Clariidae	2.0
Clarias teijsmanni	Clariidae	1.0
Crossocheilus oblongos	Cyprinidae	2.0
Cyclocheilichthys apogon	Cyprinidae	2.0
Cyclocheilichthys heteronema	Cyprinidae	1.5
Cyclocheilichthys repasson	Cyprinidae	2.0
Danio regina	Cyprinidae	1.0
Doryichthys deokhatoides	Syngnathidae	2.0
Doryichthys martensii	Syngnathidae	2.0
Epalzeorhynchos kalopterum	Cyprinidae	1.5
Esomus siamensis	Cyprinidae	3.5
Garra cambodgiensis	Cyprinidae	0.5
Glyptothorax major	Sisoridae	1.0
Glyptothorax plathypogonoides	Sisoridae	0.5

3

٠

Χ.

Table 1. (Continued)

1

19 M 1

Species	Family	Tolerance Level		
Hampala macrolepidota	Cyprinidae	2.5		
Ielicophagus waandersii	Pangasiidae	2.0		
Helostoma temminckii	Helostomatidae	2.0		
Hemibagrus gracilis	Bagridae	1.5		
Hemibagrus hoevenii	Bagridae	4.0		
Hemibagrus nemurus	Bagridae	3.5		
Temirhamphodon pogonognathus	Hemirhamphidae	2.5		
Homaloptera leonardi	Balitoridae	1.0		
Homaloptera nebulosa	Balitoridae	1.0		
Homaloptera orthogoniata	Balitoridae	1.0		
Homaloptera zollingeri	Balitoridae	1.0		
Kryptopterus apogon	Siluridae	2.0		
Kryptopterus bicirrhis	Siluridae	1.5		
Labeo chrysophekadion	Cyprinidae	1.5		
Labiobarbus fasciatus	Cyprinidae	1.0		
Labiobarbus festivus	Cyprinidae	1.0		
Labiobarbus Jestivus Labiobarbus leptocheilus	Cyprinidae	1.5		
Labiobarbus cellatus	Cyprinidae	1.5		
Lablobarbus ocentitus Laides hexanema	Schilbeidae	2.0		
Laides nexanema Laides sinensis	Schilbeidae	1.5		
Laiges sinensis Leiocassis leiacanthus	Bagridae	1.0		
Leiocassis leiacaninus Leiocassis micropogon	Bagridae	1.0		
	Bagridae	1.0		
Leiocassis poecilopterus	Cyprinidae	2.0		
Leptobarbus hoevenii	Loricariidae	4.5		
Liposarcus pardalis	Luciocephalidae	1.5		
Luciocephalus pulcher	Cyprinidae	2.0		
Luciosoma setigerum	Cyprinidae	1.5		
Luciosoma trinema		1.5		
Macrochirichthys macrochirus	Cyprinidae Mastacembelidae	1.5		
Macrognathus maculatus	Mastacembelidae	2.0		
Mastacembelus favus		1.5		
Mastacembelus notophthalmus	Mastacembelidae	1.5		
Mastacembelus unicolor	Mastacembelidae			
Monopterus albus	Synbranchidae	4.0		
Mystacoleucus marginatus	Cyprinidae	2.5		
Mystus gulio	Bagridae	4.0		
Mystus nigriceps	Bagridae	2.5		
Mystus singaringan	Bagridae	2.5		
Mystus wolffii	Bagridae	4.0		
Nandus nebulosus	Nandidae	2.0		
Nemachilus masyae	Balitoridae	1.5		
Nemachilus selangoricus	Balitoridae	1.5		
Neolissochilus soroides	Cyprinidae	1.5		
Notopterus notopterus	Notopteridae	2.5		
Ompok bimaculatus	Siluridae	1.5		
Oreochromis mossambicus	Cichlidae	3.5		
Osphronemus goramy	Osphronemidae	2.5		
Osteochilus enneaporos	Cyprinidae	1.5		
Osteochilus hasseltii	Cyprinidae	3.0		
Osteochilus melanopleurus	Cyprinidae	2.0		
Osteochilus spilurus	Cyprinidae	2.0		
Osteochilus waandersii	Cyprinidae	1.5		
Oxyeleotris marmorata	Eleotridae	3.0		
Oxygaster anumalura	Cyprinidae	2.0		
Pangasius micronemus	Pangasiidae	2.0		
Pangasius nasutus	Pangasiidae	2.0		

đ

Table 1 (continued)

Species	Family	Tolerance Level
Pangio cuneovirgata	Cobitidae	2.0
Pangio kuhlii	Cobitidae	2.0
Pangio malayana	Cobitidae	2.0
Pangio piperata	Cobitidae	2.0
Parachela maculicauda	Cyprinidae	1.5
Parachela oxygastroides	Cyprinidae	2.0
Parambassis apogonoides	Ambassidae	1.5
Parambassis siamensis	Ambassidae	2.0
Poecilia reticulata	Poeciliidae	4.0
Poropuntius deauratus	Cyprinidae	2.0
Pristolepis fasciata	Nandidae	2.5
Probarbus jullieni	Cyprinidae	1.0
Pseudogobiopsis oligactis	Gobiidae	1.5
Puntioplites bulu	Cyprinidae	2.0
Puntius binotatus	Cyprinidae	2.5
Puntius gonionotus	Cyprinidae	3.0
Puntius lateristriga	Cyprinidae	1.5
Puntius partipentazona	Cyprinidae	2.0
Puntius schwanenfeldii	Cyprinidae	2.5
Rasbora argyrotaenia	Cyprinidae	2.0
Rasbora bankanensis	Cyprinidae	2.0
Rasbora einthovenii	Cyprinidae	2.0
Rasbora elegans	Cyprinidae	1.5
Rasbora heteromorpha	Cyprninidae	1.5
Rasbora sumatrana	Cyprinidae	2.5
Scleropages formosus	Osteoglossidae	1.5
Silurichthys hasseltii	Siluridae	1.5
Sphaerichthys osphromenoides	Belontiidae	1.5
Tetraodon leiurus	Tetraodontidae	2.0
Tetraodon palembangensis	Tetraodontidae	1.5
Thynnichthys thynnoides	Cyprinidae	2.0
Tor tambra	Cyprinidae	1.0
Trichogaster leerii	Belontiidae	2.0
Trichogaster pectoralis	Belontiidae	3.5
Trichogaster trichopterus	Belontiidae	2.5
-	Belontiidae	2.0
Trichopsis vittata Tuberoschistura baenzigeri	Balitoridae	2.0
Vaillantella euepipterus	Balitoridae	1.0
	Balitoridae	1.0
Vaillantella maassi Wallago loorii	Siluridae	2.0
Wallago leerii Xenentodon canciloides	Belonidae	2.0

Table 2.	Fish index	for the five	categories of river	classification
I GOIC M.	I IOII IIIQUA	101 110 1110	outogoiles of it. of	•1000111•0000

.

Fish Index		River Classification	
0.5-<2.0	. ~	Class I	
2.0-<2.5		Class IIA	
2.5-<3.0		Class IIB	
3.0-<4.0		Class III	•
4.0 - 4.5		Class IV	

5

Site	Fish Species Caught	Tolerance Level	Fish Index	River Classification
1	Channa gachua	1.0	$3.5 \div 4 = 0.88$	Class I
1	Glytothorax major	1.0		
	Glyptothorax platypogonoides	0.5		
	Giypioinorax platypogonotaes Tor tambra	1.0		
2	Channa gachua	1.0	$8 \div 5 = 1.60$	Class I
2	Cyclocheilichthys apogon	2.0		
	Hemibagrus gracilis	1.5		
	Mastacembelus notophthalmus	1.5		
	Poropuntius deauratus	2.0		
3	Channa lucius	2.5	$16 \div 7 = 2.29$	Class IIA
5	Clarias batrachus	3.5		
	Glyptothorax major	1.0		
	Hampala macrolepidota	2.5		
	Hemibagrus nemurus	3.5		
	Macrognathus maculatus	1.5		
	Mastacembelus notophthalmus	1.5		
4	Channa lucius	2.5	$20.5 \div 8 = 2.56$	Class IIB
т	Channa striata	3.5		
	Clarias batrachus	3.5		
	Hemibagrus gracilis	1.5		
	Mastacembelus notophthalmus	1.5		
	Osteochilus hasseltii	3.0		
	Rasbora sumatrana	2.5		
	Trichogaster trichopterus	2.5		
5	Channa striata	3.5	$21.5 \div 7 = 3.07$	Class III
	Hemirhamphodon pogonognathus	2.5		
	Liposarcus pardalis	4.5		
	Oreochromis mossambicus	3.5		
	Oxyeleotris marmorata	3.0		
	Oxygaster anomalura	2.0		
	Rasbora sumatrana	2.5		
6	Liposarcus pardalis	4.5	$12.5 \div 3 = 4.17$	Class IV
v	Monopterus albus	4.0		
	Poecilia reticulata	4.0		

 Table 3. Examples of fish index based on hypothetical fish species composition.

Acknowledgments This study was supported partly by research grants IRPA 08-02-03-0776 and IRPA 09-02-03-1014 from the Ministry of Science, Technology and Environment, Malaysia. We are grateful to Mat, Mokhtar and Ramly for field assistance. Professor Dr. Yong Hoi Sen read an early draft of the manuscript, and his suggestions and comments have greatly improved the paper.

REFERENCES

1. Zakaria-Ismail, M. and Salleh, A. (1997). Preliminary observations on the possibility of using algae and fish as biological indicators for Sungai Rompin and Sungai Melaka. *Ensearch* **10**: 125-132.

2. DOE (1992). Development of water quality criteria and standards – Phase IV, River Classification. Volue XI – Sungai Melaka.

.

3. DOE (1992). Development of water quality criteria and standards – Phase IV, River Classification. Volume III – Sungai Selangor.

4. DOE (1999). Classification of Malaysian Rivers. Volume 5, Kesang River.

5. DOE (1999). Classification of Malaysian Rivers. Volume 7, Langat River.

6. Washington, H.G. (1984). Diversity, biotic and similarity indices – A review with special relevance to aquatic ecosystem. *Water Res.* 18: 652-694.

7. Hilsenhoff, W.L. (1988). Rapid field assessment of organic pollution with a family-level biotic index. J. N. Am. Benthol. Soc. 7: 65-68.

8. Yap, S.Y., Phang, S.M. and Zakaria-Ismail, M. (1997). Aquatic ecological studies for the classification of the Selangor River and Bernam River. *Ensearch* **10**: 3-19.

9. Zakaria-Ismail, M. (1994). Zoogeography and biodiversity of of the freshwater fishes of Southeast Asia. *Hydrobiologia* **285**: 41-48.

ń,